Enhanced biological phosphorus removal(EBPR) was investigated in an anaerobic/aerobic sequencing batch reactor(SBR) supplied with glucose as a single organic substrate.The results illustrated that EBPR process could a...Enhanced biological phosphorus removal(EBPR) was investigated in an anaerobic/aerobic sequencing batch reactor(SBR) supplied with glucose as a single organic substrate.The results illustrated that EBPR process could also occur successfully with glucose other than short chain fatty acids(SCFAs).High phosphorus release and poly-hydroxyalkanoate(PHA) accumulation in the anaerobic phase was found vital for the removal of phosphorus during the aerobic phase.The measurement of intracellular reserves revealed that glycogen had a higher chance to replace the energy role of poly-P under anaerobic conditions.Moreover,glycogen was also utilized as the carbon source for PHA synthesis,as well as a reducing power as reported earlier.The accumulated PHA in this system was mainly in the form of poly-hydroxyvalerate(PHV) instead of poly-hydroxybutyrate(PHB),and was inferred to be caused by the excess reducing power contained in glucose.Lactate as a fermentation product was also found released into the bulk solution.Applying fundamental biochemistry knowledge to the experimental results,a conceptual biochemical model was developed to explain the metabolism of the glucose-induced EBPR.展开更多
为了提高声纳远程弱信号或强干扰背景下的线谱检测能力,提出了一种利用相干累加频域批处理(coher-ent addition and frequency domain batch,CAFB)自适应线谱增强技术实现窄带弱信号线谱检测的新方法.该方法将接收信号进行相干累加预处...为了提高声纳远程弱信号或强干扰背景下的线谱检测能力,提出了一种利用相干累加频域批处理(coher-ent addition and frequency domain batch,CAFB)自适应线谱增强技术实现窄带弱信号线谱检测的新方法.该方法将接收信号进行相干累加预处理,使输出信噪比获得提高.提取线谱采用时域自适应线谱增强方法(adaptive line en-hancement,ALE),无需独立的参考信号,自适应地与相关的正弦或窄带信号进行匹配,可以从加性宽带噪声背景中将正弦或窄带信号分离出来.同时将频域批处理方法引入时域自适应线谱增强算法,有效地减小了算法的计算量.仿真和湖试、海试试验结果表明,该方法提高了低信噪比条件下的弱信号线谱检测能力,在获得较高的检测处理增益的同时解决了实时处理的运算量问题,使工程应用得以实现.展开更多
基金Science and Technology Project of Zhejiang and Hangzhou (No2007C13081, No20062912A06)
文摘Enhanced biological phosphorus removal(EBPR) was investigated in an anaerobic/aerobic sequencing batch reactor(SBR) supplied with glucose as a single organic substrate.The results illustrated that EBPR process could also occur successfully with glucose other than short chain fatty acids(SCFAs).High phosphorus release and poly-hydroxyalkanoate(PHA) accumulation in the anaerobic phase was found vital for the removal of phosphorus during the aerobic phase.The measurement of intracellular reserves revealed that glycogen had a higher chance to replace the energy role of poly-P under anaerobic conditions.Moreover,glycogen was also utilized as the carbon source for PHA synthesis,as well as a reducing power as reported earlier.The accumulated PHA in this system was mainly in the form of poly-hydroxyvalerate(PHV) instead of poly-hydroxybutyrate(PHB),and was inferred to be caused by the excess reducing power contained in glucose.Lactate as a fermentation product was also found released into the bulk solution.Applying fundamental biochemistry knowledge to the experimental results,a conceptual biochemical model was developed to explain the metabolism of the glucose-induced EBPR.
文摘为了提高声纳远程弱信号或强干扰背景下的线谱检测能力,提出了一种利用相干累加频域批处理(coher-ent addition and frequency domain batch,CAFB)自适应线谱增强技术实现窄带弱信号线谱检测的新方法.该方法将接收信号进行相干累加预处理,使输出信噪比获得提高.提取线谱采用时域自适应线谱增强方法(adaptive line en-hancement,ALE),无需独立的参考信号,自适应地与相关的正弦或窄带信号进行匹配,可以从加性宽带噪声背景中将正弦或窄带信号分离出来.同时将频域批处理方法引入时域自适应线谱增强算法,有效地减小了算法的计算量.仿真和湖试、海试试验结果表明,该方法提高了低信噪比条件下的弱信号线谱检测能力,在获得较高的检测处理增益的同时解决了实时处理的运算量问题,使工程应用得以实现.