The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci...The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.展开更多
Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological proce...Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.展开更多
Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be...Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.展开更多
High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high vo...High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.展开更多
Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What ...Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures.Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties.Of the available manufacturing methods,additive manufacturing(AM)has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways.This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces,their fabrication techniques,and diverse applications.A comprehensive evaluation of micro fabrication methods is conducted,delving into their respective strengths and limitations.Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision.The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays,microneedles,and tissue scaffolds.展开更多
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac...Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.展开更多
The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,th...The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,the practical application is impeded by the instability of electrode/electrolyte interface and Ni-rich cathode itself.Herein we proposed an electron-defect electrolyte additive trimethyl borate(TMB)which is paired with the commercial carbonate electrolyte to construct highly conductive fluorine-and boron-rich cathode electrolyte interface(CEI)on LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM90)surface and solid electrolyte interphase(SEI)on lithium metal surface.The modified CEI effectively mitigates the structural transformation from layered to disordered rock-salt phase,and consequently alleviate the dissolution of transition metal ions(TMs)and its“cross-talk”effect,while the enhanced SEI enables stable lithium plating/striping and thus demonstrated good compatibility between electrolyte and lithium metal anode.As a result,the common electrolyte with 1 wt%TMB enables 4.7 V NCM90/Li cell cycle stably over 100 cycles with 70%capacity retention.This work highlights the significance of the electron-defect boron compounds for designing desirable interfacial chemistries to achieve high performance NCM90/Li battery under high voltage operation.展开更多
Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish...Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.展开更多
The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials develop...The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.展开更多
Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsi...Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.展开更多
Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite...Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.展开更多
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m...Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cyc...Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.展开更多
The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak...The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.展开更多
Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,...Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices.展开更多
The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.Th...The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure.展开更多
Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,t...Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.展开更多
The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as wel...The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as well as notable implementation of fuzzy ideas in certain situations involving ambiguity or vagueness.In the context of different fuzzy spaces,we demonstrate their various fundamental stabilities related to Ulam stability theory.An appropriate example is given to show how stability result fails when the singular case occurs.The findings of this study suggest that stability results are valid in situations with uncertain or imprecise data.The stability results obtained under these fuzzy spaces are compared with previous stability results.展开更多
Aqueous zinc-ion capacitors (ZICs) are considered as potential candidates for next generation electrochemical energy storage devices due to their high safety and low cost.However,the existing aqueous ZICs usually have...Aqueous zinc-ion capacitors (ZICs) are considered as potential candidates for next generation electrochemical energy storage devices due to their high safety and low cost.However,the existing aqueous ZICs usually have the problems of zinc dendrite growth and unsatisfactory performance at low temperature.Herein,an erythritol (Eryt) additive with inhibition of zinc dendrites and anti-freezing capability was introduced into the ZnSO4electrolyte.The experimental characterization and theoretical calculation confirm that the Eryt adsorbed on the surface of zinc anodes regulates the deposition orientation of Zn^(2+) and inhibits the formation of dendrites.It also reconstructs the solvation structure in the electrolyte to reduce water activity,enabling the electrolyte to have a lower freezing point for operation at low temperature.With the assistance of Eryt,the Zn||Zn symmetric cell exhibits a long cycle life of 2000 h,while the ZIC assembled with activated carbon (AC) cathode and zinc anode (Zn||AC) maintains a capacity retention of 98.2% after 30,000 cycles at a current density of 10 A g^(-1)(even after 10,000 cycles at-20°C,the capacity retention rate reached 94.8%.).This work provides a highly scalable,low-cost and effective strategy for the protection of the anodes of low-temperature aqueous ZICs.展开更多
基金financially supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore,under the Aerospace Consortium Cycle 12“Characterization of the Effect of Wire and Powder Deposited Materials”(No.A1815a0078)。
文摘The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition.
基金support by National Key Research and Development Program of China(Grant No.:2023YFA0913604)Program of National Natural Science Foundation of China(Grant No.:22178170,22378195)+2 种基金Six talent peaks project in Jiangsu Province(SWYY-045)Program of National Natural Science Foundation of China(Grant No.22208155)Jiangsu Province Natural Science Foundation for Young Scholars(Grant No.BK20210552).
文摘Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.
基金This work is financially supported by National Natural Science Foundation of China(NSFC-No.52173257 and 52372064).
文摘Aqueous zinc-ion batteries are promising due to inherent safety,low cost,low toxicity,and high volumetric capacity.However,issues of dendrites and side reactions between zinc metal anode and the electrolyte need to be solved for extended storage and cycle life.Here,we proposed that an electrolyte additive with an intermediate chelation strength of zinc ion—strong enough to exclude water molecules from the zinc metal-electrolyte interface and not too strong to cause a significant energy barrier for zinc ion dissociation—can benefit the electrochemical stability by suppressing hydrogen evolution reaction,overpotential growth,and den-drite formation.Penta-sodium diethylene-triaminepentaacetic acid salt was selected for such a purpose.It has a suitable chelating ability in aqueous solutions to adjust solvation sheath and can be readily polarized under electrical loading conditions to further improve the passivation.Zn||Zn symmetric cells can be stably operated over 3500 h at 1 mA cm^(-2).Zn||NH4V4O10 full cells with the additive show great cycling stability with 84.6%capacity retention after 500 cycles at 1 A g^(-1).Since the additive not only reduces H2 evolution and corrosion but also modifies Zn2+diffusion and deposition,highlyreversible Zn electrodes can be achieved as verified by the experimental results.Our work offers a practical approach to the logical design of reliable electrolytes for high-performance aqueous batteries.
基金supported by the National Natural Science Foundation of China(22179041)。
文摘High voltage is necessary for high energy lithium-ion batteries but difficult to achieve because of the highly deteriorated cyclability of the batteries.A novel strategy is developed to extend cyclability of a high voltage lithium-ion battery,LiNi_(0.5)Mn_(1.5)O_(4)/Graphite(LNMO/Graphite)cell,which emphasizes a rational design of an electrolyte additive that can effectively construct protective interphases on anode and cathode and highly eliminate the effect of hydrogen fluoride(HF).5-Trifluoromethylpyridine-trime thyl lithium borate(LTFMP-TMB),is synthesized,featuring with multi-functionalities.Its anion TFMPTMB-tends to be enriched on cathode and can be preferentially oxidized yielding TMB and radical TFMP-.Both TMB and radical TFMP can combine HF and thus eliminate the detrimental effect of HF on cathode,while the TMB dragged on cathode thus takes a preferential oxidation and constructs a protective cathode interphase.On the other hand,LTFMP-TMB is preferentially reduced on anode and constructs a protective anode interphase.Consequently,a small amount of LTFMP-TMB(0.2%)in 1.0 M LiPF6in EC/DEC/EMC(3/2/5,wt%)results in a highly improved cyclability of LNMO/Graphite cell,with the capacity retention enhanced from 52%to 80%after 150 cycles at 0.5 C between 3.5 and 4.8 V.The as-developed strategy provides a model of designing electrolyte additives for improving cyclability of high voltage batteries.
基金The National Science Foundation(NSF)through Grants ECCS-2111056 and CMMI-1846863.
文摘Over the course of millions of years,nature has evolved to ensure survival and presents us with a myriad of functional surfaces and structures that can boast high efficiency,multifunctionality,and sustainability.What makes these surfaces particularly practical and effective is the intricate micropatterning that enables selective interactions with microstructures.Most of these structures have been realized in the laboratory environment using numerous fabrication techniques by tailoring specific surface properties.Of the available manufacturing methods,additive manufacturing(AM)has created opportunities for fabricating these structures as the complex architectures of the naturally occurring microstructures far exceed the traditional ways.This paper presents a concise overview of the fundamentals of such patterned microstructured surfaces,their fabrication techniques,and diverse applications.A comprehensive evaluation of micro fabrication methods is conducted,delving into their respective strengths and limitations.Greater emphasis is placed on AM processes like inkjet printing and micro digital light projection printing due to the intrinsic advantages of these processes to additively fabricate high resolution structures with high fidelity and precision.The paper explores the various advancements in these processes in relation to their use in microfabrication and also presents the recent trends in applications like the fabrication of microlens arrays,microneedles,and tissue scaffolds.
基金financially supported by the National Natural Science Foundation of China(Grant Nos:52305502,U23B6005,52293405)China Postdoctoral Science Foundation(Grant No:2023M732788)the Postdoctoral Research Project of Shaanxi Province.
文摘Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.
基金financially supported by the National Key Research and Development Program of China(2022YFE0206300)the National Natural Science Foundation of China(U21A2081,22075074,22209047)+1 种基金the Natural Science Foundation of Hunan Province(2022JJ40140)the Hunan Provincial Department of Education Outstanding Youth Project(22B0864,23B0037)。
文摘The Li metal battery with ultrahigh-nickel cathode(LiNi_(x)M_(1-x)O_(2),M=Mn,Co,and x≥0.9)under high-voltage is regarded as one of the most promising approaches to fulfill the ambitious target of 400 Wh/kg.However,the practical application is impeded by the instability of electrode/electrolyte interface and Ni-rich cathode itself.Herein we proposed an electron-defect electrolyte additive trimethyl borate(TMB)which is paired with the commercial carbonate electrolyte to construct highly conductive fluorine-and boron-rich cathode electrolyte interface(CEI)on LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(NCM90)surface and solid electrolyte interphase(SEI)on lithium metal surface.The modified CEI effectively mitigates the structural transformation from layered to disordered rock-salt phase,and consequently alleviate the dissolution of transition metal ions(TMs)and its“cross-talk”effect,while the enhanced SEI enables stable lithium plating/striping and thus demonstrated good compatibility between electrolyte and lithium metal anode.As a result,the common electrolyte with 1 wt%TMB enables 4.7 V NCM90/Li cell cycle stably over 100 cycles with 70%capacity retention.This work highlights the significance of the electron-defect boron compounds for designing desirable interfacial chemistries to achieve high performance NCM90/Li battery under high voltage operation.
基金financially supported by National Natural Science Foundation of China (22209133, 22272131, 21972111, 22211540712)Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1411)+1 种基金Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and DevicesChongqing Key Laboratory for Advanced Materials and Technologies。
文摘Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515010875)Guangdong Basic and Applied Basic Research Foundation(2021A1515110017)+10 种基金Natural Science Foundation of Top Talent of SZTU(grant no.20200205)Project of Education Commission of Guangdong Province of China(2021KQNCX080)Research on the electrochemical reaction mechanism of the anode of mediumlow temperature direct ammonia SOFCs(20231063020006)the project of al solid-state high energy density energy storage system(20221063010031)the project of Shenzhen Overseas Talent upon Industrialization of 1kw stack for direct ammonia SOFCs(20221061010002)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011673)Education Department of Guangdong Province(No.2021KCXTD045)National Natural Science Foundation of China(No.12274303)the support from the Fundamental Research Funds for the Central Universities(2232023A-01)NSFC No.52103202beamline BL16B1 at Shanghai Synchrotron Radiation Facility(SSRF)for the synchrotron experiment
文摘The emergence of polymerized small molecule acceptors(PSMAs)has significantly improved the performance of all-polymer solar cells(all-PSCs).However,the pace of device engineering lacks behind that of materials development,so that a majority of the PSMAs have not fulfilled their potentials.Furthermore,most high-performance all-PSCs rely on the use of chloroform as the processing solvent.For instance,the recent highperformance PSMA,named PJ1-γ,with high LUMO,and HOMO levels,could only achieve a PCE of 16.1%with a high-energy-level donor(JD40)using chloroform.Herein,we present a methodology combining sequential processing(SqP)with the addition of 0.5%wt PC_(71)BM as a solid additive(SA)to achieve an impressive efficiency of 18.0%for all-PSCs processed from toluene,an aromatic hydrocarbon solvent.Compared to the conventional blend-casting(BC)method whose best efficiency(16.7%)could only be achieved using chloroform,the SqP method significantly boosted the device efficiency using toluene as the processing solvent.In addition,the donor we employ is the classic PM6 that has deeper energy levels than JD40,which provides low energy loss for the device.We compare the results with another PSMA(PYF-T-o)with the same method.Finally,an improved photostability of the SqP devices with the incorporation of SA is demonstrated.
基金the European Research Council starting grant “Cell Hybridge” for financial support under the Horizon2020 framework program (Grant#637308)the Province of Limburg for support and funding
文摘Melt extrusion-based additive manufacturing(ME-AM)is a promising technique to fabricate porous scaffolds for tissue engi-neering applications.However,most synthetic semicrystalline polymers do not possess the intrinsic biological activity required to control cell fate.Grafting of biomolecules on polymeric surfaces of AM scaffolds enhances the bioactivity of a construct;however,there are limited strategies available to control the surface density.Here,we report a strategy to tune the surface density of bioactive groups by blending a low molecular weight poly(ε-caprolactone)5k(PCL5k)containing orthogonally reactive azide groups with an unfunctionalized high molecular weight PCL75k at different ratios.Stable porous three-dimensional(3D)scaf-folds were then fabricated using a high weight percentage(75 wt.%)of the low molecular weight PCL 5k.As a proof-of-concept test,we prepared films of three different mass ratios of low and high molecular weight polymers with a thermopress and reacted with an alkynated fluorescent model compound on the surface,yielding a density of 201-561 pmol/cm^(2).Subsequently,a bone morphogenetic protein 2(BMP-2)-derived peptide was grafted onto the films comprising different blend compositions,and the effect of peptide surface density on the osteogenic differentiation of human mesenchymal stromal cells(hMSCs)was assessed.After two weeks of culturing in a basic medium,cells expressed higher levels of BMP receptor II(BMPRII)on films with the conjugated peptide.In addition,we found that alkaline phosphatase activity was only significantly enhanced on films contain-ing the highest peptide density(i.e.,561 pmol/cm^(2)),indicating the importance of the surface density.Taken together,these results emphasize that the density of surface peptides on cell differentiation must be considered at the cell-material interface.Moreover,we have presented a viable strategy for ME-AM community that desires to tune the bulk and surface functionality via blending of(modified)polymers.Furthermore,the use of alkyne-azide“click”chemistry enables spatial control over bioconjugation of many tissue-specific moieties,making this approach a versatile strategy for tissue engineering applications.
基金financially supported by the Young Individual Research Grants(Grant No:M22K3c0097)Singapore RIE 2025 plan and Singapore Aerospace Programme Cycle 16(Grant No:M2215a0073)led by C Tan+2 种基金supported by the Singapore A*STAR Career Development Funds(Grant No:C210812047)the National Natural Science Foundation of China(52174361 and 52374385)the support by US NSF DMR-2104933。
文摘Titanium(Ti)alloys are widely used in high-tech fields like aerospace and biomedical engineering.Laser additive manufacturing(LAM),as an innovative technology,is the key driver for the development of Ti alloys.Despite the significant advancements in LAM of Ti alloys,there remain challenges that need further research and development efforts.To recap the potential of LAM high-performance Ti alloy,this article systematically reviews LAM Ti alloys with up-to-date information on process,materials,and properties.Several feasible solutions to advance LAM Ti alloys are reviewed,including intelligent process parameters optimization,LAM process innovation with auxiliary fields and novel Ti alloys customization for LAM.The auxiliary energy fields(e.g.thermal,acoustic,mechanical deformation and magnetic fields)can affect the melt pool dynamics and solidification behaviour during LAM of Ti alloys,altering microstructures and mechanical performances.Different kinds of novel Ti alloys customized for LAM,like peritecticα-Ti,eutectoid(α+β)-Ti,hybrid(α+β)-Ti,isomorphousβ-Ti and eutecticβ-Ti alloys are reviewed in detail.Furthermore,machine learning in accelerating the LAM process optimization and new materials development is also outlooked.This review summarizes the material properties and performance envelops and benchmarks the research achievements in LAM of Ti alloys.In addition,the perspectives and further trends in LAM of Ti alloys are also highlighted.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306 and R01 AR078241。
文摘Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金fellowship support from the China Scholarship Council
文摘Anode-free Li-metal batteries are of significant interest to energy storage industries due to their intrinsically high energy.However,the accumulative Li dendrites and dead Li continuously consume active Li during cycling.That results in a short lifetime and low Coulombic efficiency of anode-free Li-metal batteries.Introducing effective electrolyte additives can improve the Li deposition homogeneity and solid electrolyte interphase(SEI)stability for anode-free Li-metal batteries.Herein,we reveal that introducing dual additives,composed of LiAsF6 and fluoroethylene carbonate,into a low-cost commercial carbonate electrolyte will boost the cycle life and average Coulombic efficiency of NMC‖Cu anode-free Li-metal batteries.The NMC‖Cu anode-free Li-metal batteries with the dual additives exhibit a capacity retention of about 75%after 50 cycles,much higher than those with bare electrolytes(35%).The average Coulombic efficiency of the NMC‖Cu anode-free Li-metal batteries with additives can maintain 98.3%over 100 cycles.In contrast,the average Coulombic efficiency without additives rapidly decline to 97%after only 50 cycles.In situ Raman measurements reveal that the prepared dual additives facilitate denser and smoother Li morphology during Li deposition.The dual additives significantly suppress the Li dendrite growth,enabling stable SEI formation on anode and cathode surfaces.Our results provide a broad view of developing low-cost and high-effective functional electrolytes for high-energy and long-life anode-free Li-metal batteries.
基金financial supports provided by the China Scholarship Council(Nos.202206 290061 and 202206290062)。
文摘The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.
基金the foundational support by the Fundamental Research Funds for the Central Universities(BLX202132)the foundational support by the Beijing Youth Talent Funding Program-Visiting program for young foreign scholars(Q2023043)IIT(BHU)Varanasi.Part of the element in Fig.1 is designed by Freepik.
文摘Due to their extraordinary durability and thermal stability,Epoxy Resin Thermosets(ERTs)are essential in various industries.However,their poor recyclability leads to unacceptable environmental pollution.In this study,Wu et al.successfully synthesized a completely bio-based ERT using lignocellulose-derived building blocks which exhibit outstanding thermal and mechanical properties.Remarkably,these bio-materials degrade via methanolysis without the need of any catalyst,presenting a smart and cost-effective recycling strategy.Furthermore,this approach could be employed for fabricating reusable composites comprising glass fiber and plant fiber,thereby expanding its applications in sustainable transportation,coatings,paints or biomedical devices.
基金the Swedish Research Council for Sustainable Development FORMAS(grant 2021-00527)Wangjie Wu acknowledges the scholarship funding of the CSC-KTH program.
文摘The pressing demand for sustainable advancements in road infrastructure has catalyzed extensive research into environmentally conscious alternatives for the maintenance and restoration of asphalt concrete pavements.This paper offers a comprehensive review and analysis of bio-based rejuvenators as a promising avenue for enhancing the longevity and sustainability of asphalt.Through a multifaceted exploration,it delves into various aspects of this innovative approach.Providing a thorough overview of bio-based rejuvenators,the study highlights their renewable and environmentally friendly characteristics.It conducts an in-depth examination of a wide spectrum of bio-derived materials,including vegetable oils,waste-derived bio-products,and biopolymers,through a comprehensive survey.The paper evaluates how bio-based rejuvenators enhance aged asphalt binders and mixes,effectively mitigating the adverse impacts of aging.Furthermore,it investigates how these rejuvenators address environmental concerns by identifying compatibility issues,assessing long-term performance,and evaluating economic feasibility.Finally,the paper outlines potential advancements and research pathways aimed at optimizing the utilization of bio-based rejuvenators in asphalt concrete,thereby contributing to the sustainable evolution of road infrastructure.
基金support from European Union Seventh Frame-work Programme(FP7/2007-2013 project SusFuelCat,grant No.310490)is acknowledged.
文摘Aqueous-phase reforming(APR)is an attractive process to produce bio-based hydrogen from waste biomass streams,during which the catalyst stability is often challenged due to the harsh reaction conditions.In this work,three Pt-based catalysts supported on C,AlO(OH),and ZrO_(2)were investigated for the APR of hydroxyacetone solution in afixed bed reactor at 225℃and 35 bar.Among them,the Pt/C catalyst showed the highest turnover frequency for H_(2)production(TOF of 8.9 molH_(2)molPt^(-1)min^(-1))and the longest catalyst stability.Over the AlO(OH)and ZrO_(2)supported Pt catalysts,the side reactions consuming H_(2),formation of coke,and Pt sintering result in a low H_(2)production and the fast catalyst deactivation.The proposed reaction pathways suggest that a promising APR catalyst should reform all oxygenates in the aqueous phase,minimize the hydrogenation of the oxygenates,maximize the WGS reaction,and inhibit the condensation and coking reactions for maximizing the hydrogen yield and a stable catalytic performance.
基金The second author is supported by the Science and Engineering Research Board(SERB)of India(MTR/2020/000534).
文摘The intention of this paper is to study new additive kind multi-dimensional functional equations inspired by several applications of difference equations in biology,control theory,economics,and computer science,as well as notable implementation of fuzzy ideas in certain situations involving ambiguity or vagueness.In the context of different fuzzy spaces,we demonstrate their various fundamental stabilities related to Ulam stability theory.An appropriate example is given to show how stability result fails when the singular case occurs.The findings of this study suggest that stability results are valid in situations with uncertain or imprecise data.The stability results obtained under these fuzzy spaces are compared with previous stability results.
基金the financial supports of the National Natural Science Foundation of China(22109045,21875065)the China Postdoctoral Science Foundation Funded Project(2021M701191).
文摘Aqueous zinc-ion capacitors (ZICs) are considered as potential candidates for next generation electrochemical energy storage devices due to their high safety and low cost.However,the existing aqueous ZICs usually have the problems of zinc dendrite growth and unsatisfactory performance at low temperature.Herein,an erythritol (Eryt) additive with inhibition of zinc dendrites and anti-freezing capability was introduced into the ZnSO4electrolyte.The experimental characterization and theoretical calculation confirm that the Eryt adsorbed on the surface of zinc anodes regulates the deposition orientation of Zn^(2+) and inhibits the formation of dendrites.It also reconstructs the solvation structure in the electrolyte to reduce water activity,enabling the electrolyte to have a lower freezing point for operation at low temperature.With the assistance of Eryt,the Zn||Zn symmetric cell exhibits a long cycle life of 2000 h,while the ZIC assembled with activated carbon (AC) cathode and zinc anode (Zn||AC) maintains a capacity retention of 98.2% after 30,000 cycles at a current density of 10 A g^(-1)(even after 10,000 cycles at-20°C,the capacity retention rate reached 94.8%.).This work provides a highly scalable,low-cost and effective strategy for the protection of the anodes of low-temperature aqueous ZICs.