Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bi...Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the mag-netization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was par-tially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic proper-ties展开更多
In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,...In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.展开更多
Many science-based institutions in most developing countries use heavy metal containing salts in practical teaching sessions. The commonly used chemicals are the salts of lead (II) and copper (II) and the wastes gener...Many science-based institutions in most developing countries use heavy metal containing salts in practical teaching sessions. The commonly used chemicals are the salts of lead (II) and copper (II) and the wastes generated end up into the environment when untreated. Thus, a study was done to remove lead (II) and copper (II) ions from mono synthetic aqueous solution using bio-char from <i></span><i><span style="font-family:Verdana;">Ficus</span></i> <i><span style="font-family:Verdana;">natalensis</span></i><span style="font-family:Verdana;"></i> fruits (FNF). This was done at varied pH, contact time, temperature, bio-char dosage level, salinity and metal ion concentration using the batch approach. The residual metal concentrations were determined using the atomic absorption spectrophotometer. The optimum pH for the adsorption of copper (II) and lead (II) ions was found to be 4.0 and 5.0 respectively. The maximum percentage adsorption of copper (II) and lead (II) by the FNF bio-char was established at 60 minutes contact time, 47.5</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">°C</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and 0.4 g adsorbent dose. Increase in the metal ion concentration and the presence of interfering ions in the aqueous solution lead to decrease in the percentage adsorption. The highest adsorption capacity was found to be </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">161.29 mg/g</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1250</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> mg/g for copper (II) and lead (II) ions respectively. The thermodynamic parameters indicated the feasibility of the adsorption of copper (II) and lead (II) on the bio-char of FNF. Thus, bio-char from FNF may be used as an adsorbent in waste management where copper (II) and lead (II) ions are present </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">at a concentration range of between 5 and 100 mg/l</span></span></span><span style="font-family:Verdana;">.展开更多
The experiment was conducted by using 20 bulls of Lai Sind cattle (a cross breed between Red Sindhi and local Vietnam yellow cattle) from 15 - 16 months of age, weighed approximately 154 - 156 kg, housed individually ...The experiment was conducted by using 20 bulls of Lai Sind cattle (a cross breed between Red Sindhi and local Vietnam yellow cattle) from 15 - 16 months of age, weighed approximately 154 - 156 kg, housed individually with provision of adequate feed trough and free access to water to evaluate the effect of tannin sourced from green tea by-product and addition of bio-char on methane production and animal performance. The experimental diets were formulated by replacing elephant grass in basal diet by bio-char and green tea by-product with the replacement of 0.5 - 1 bio-char and 3% - 5% green tea by-products, respectively to make the content of tannin in the diet of 7.3 g and 12.5 g tannin per kg dry matter. Results from this study revealed that bio-char and green tea by-product included into the diet with different levels had significantly affected on the feed intake, as the increasing level of tannin in the diet tended to increase the feed intake. The inclusion of green tea by-product in the diet which resulted in the content of tannin in the diet of 12.5 g/kg DM had significantly reduced methane emission without altering animal performance, thus the inclusion of 0.5% bio-char and 5% of green tea by-product can be applied in order to mitigate methane emission, thus contributed to environment protection.展开更多
Biobased adsorbents are eco-friendly materials used for water and wastewater treatment and air cleaning.This research work explores the potential use of rice husk chars as a low-cost adsorbent for pollutants from wate...Biobased adsorbents are eco-friendly materials used for water and wastewater treatment and air cleaning.This research work explores the potential use of rice husk chars as a low-cost adsorbent for pollutants from water,such as methylene blue and ethinylestradiol.Rice husk chars are prepared by combustion of rice husks(RH-Char)or pre-treated rice husks(PT-Char).A third char(M-Char)supplied by a local company which uses rice husks as combustion material is also studied.The chars are characterized by field emission scanning electron microscopy(FE-SEM)in conjunction with energy dispersive X-ray spectroscopy(EDX),X-ray powder diffraction(XRD),and zeta-potential measurements.The three bio-chars are tested as adsorbent for the removal of two wastewater contaminants:methylene blue(MB)and ethinylestradiol(EE2).According to the results,RH-Char and PT-Char present zeta-potential values near−52 mV,whereas M-Char shows a zeta-potential value of−32 mV.Both RH-Char and PTChar are rich in amorphous SiO_(2) and M-Char has crystalline SiO_(2)(cristobalite).The bio-chars remove MB and EE2 efficiently showing the following results for the adsorption capacity of MB(inμmol g^(−1)):769.2(RH-Char),41.2(PT-Char),and 31.7(M-Char).The adsorption capacity values for EE2(inμmol g^(−1))are:33.1(RH-Char),19.1(PT-Char),and 16.9(M-Char).The information gathered in the present work evidences the potential of rice husks bio-chars for bio-remediation and may in future contribute to the conversion of a side-stream from the rice industry into value-added materials.展开更多
Sludge bio-char(SC)and thermal-alkaline treated sludge bio-char(TSC)were prepared from municipal sewage sludge(RS)and thermal-alkaline treated sludge sediments(STAS)through fast pyrolysis under nitrogen existence cond...Sludge bio-char(SC)and thermal-alkaline treated sludge bio-char(TSC)were prepared from municipal sewage sludge(RS)and thermal-alkaline treated sludge sediments(STAS)through fast pyrolysis under nitrogen existence condition to remove cationic red X-GRL(A)and cationic yellow X-6G(B)from aqueous solutions.Results of adsorption experiment show that the adsorption capacities of TSC are better than the adsorption capacities of SC.The highest adsorption capacity of 47.65 mg/g for A and 45.41mg/g for B are obtained by TSC in an isotherm experiment at 2.0 g/L dosage and 25°C temperature.TSC adsorption for the two kinds of cationic dyes can be well fitted by pseudo-second-order kinetics model and Langmuir isotherm model.展开更多
基金financial support from the Interna-tional Islamic University Malaysia through a Research Matching Grant Scheme(RMGS11-004-0017)from the Ministry of Science Technology and Innovation,Malaysia through a Technofund Project(TF1011D220)
文摘Beneficiation of Malaysian iron ore is becoming necessary as iron resources are depleting. However, the upgrading process is challenging because of the weak magnetic properties of Malaysian iron ore. In this study, bio-char derived from oil palm empty fruit bunch (EFB) was utilized as an energy source for reduction roasting. Mixtures of Malaysian iron ore and the bio-char were pressed into briquettes and subjected to reduction roasting processes at 873-1173 K. The extent of reduction was estimated on the basis of mass loss, and the mag-netization of samples was measured using a vibrating sample magnetometer (VSM). When reduced at 873 K, the original goethite-rich ore was converted into hematite. An increase in temperature to 1073 K caused a significant conversion of hematite into magnetite and enhanced the magnetic susceptibility and saturation magnetization of samples. The magnetic properties diminished at 1173 K as the iron ore was par-tially reduced to wustite. This reduction roasting by using the bio-char can assist in upgrading the iron ore by improving its magnetic proper-ties
基金The paper was supported by the Natural Science Foundation of China(No.51906112)Natural Science Foundation of Jiangsu Province(No.BK20180548)+1 种基金China Postdoctoral Science Foundation(2019M651852)“Innovation&Entrepreneurship Talents”Introduction Plan of Jiangsu Province.
文摘In this paper,CaO/bio-char was synthesized by directly co-pyrolysis of Ca(OH)_(2) and rice straw,and used as catalyst to catalytic pyrolysis of soybean oil to produce high quality biofuel.In this co-pyrolysis process,CaO particles has been successfully embedded on the bio-char surface.During the catalytic pyrolysis process,CaO/biochar showed a good catalytic performance on the deoxygenation of soybean oil.Pyrolysis temperature affected the pyrolysis reactions and pyrolytic products distributions dramatically,higher pyrolysis temperature lead to seriously cracking reactions,lower bio-oil yield and higher gases yield,and lower pyrolysis temperature lead to higher bio-oil yield with higher oxygenated compounds content and lower hydrocarbons contents,the suitable pyrolysis temperature was around 650℃.Under the optimal conditions(650℃ with WHSV at 6.4 h^(−1) and carrier gas flow rate at 100 ml/min),the selectivity(%)of hydrocarbons in the bio-oil was more than 90%.CaO/bio-char catalyst still shows good catalytic deoxygenation activity after 4 cycles.1 g of CaO/bio-char catalyst can catalyze pyrolysis of 32 g of soybean oil to produce high-quality liquid fuel.Bio-char based catalyst has been proved to be a promising catalyst for catalytic conversion of triglyceride-based lipids into high quality liquid biofuel.
文摘Many science-based institutions in most developing countries use heavy metal containing salts in practical teaching sessions. The commonly used chemicals are the salts of lead (II) and copper (II) and the wastes generated end up into the environment when untreated. Thus, a study was done to remove lead (II) and copper (II) ions from mono synthetic aqueous solution using bio-char from <i></span><i><span style="font-family:Verdana;">Ficus</span></i> <i><span style="font-family:Verdana;">natalensis</span></i><span style="font-family:Verdana;"></i> fruits (FNF). This was done at varied pH, contact time, temperature, bio-char dosage level, salinity and metal ion concentration using the batch approach. The residual metal concentrations were determined using the atomic absorption spectrophotometer. The optimum pH for the adsorption of copper (II) and lead (II) ions was found to be 4.0 and 5.0 respectively. The maximum percentage adsorption of copper (II) and lead (II) by the FNF bio-char was established at 60 minutes contact time, 47.5</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">°C</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and 0.4 g adsorbent dose. Increase in the metal ion concentration and the presence of interfering ions in the aqueous solution lead to decrease in the percentage adsorption. The highest adsorption capacity was found to be </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">161.29 mg/g</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> and </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">1250</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> mg/g for copper (II) and lead (II) ions respectively. The thermodynamic parameters indicated the feasibility of the adsorption of copper (II) and lead (II) on the bio-char of FNF. Thus, bio-char from FNF may be used as an adsorbent in waste management where copper (II) and lead (II) ions are present </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">at a concentration range of between 5 and 100 mg/l</span></span></span><span style="font-family:Verdana;">.
文摘The experiment was conducted by using 20 bulls of Lai Sind cattle (a cross breed between Red Sindhi and local Vietnam yellow cattle) from 15 - 16 months of age, weighed approximately 154 - 156 kg, housed individually with provision of adequate feed trough and free access to water to evaluate the effect of tannin sourced from green tea by-product and addition of bio-char on methane production and animal performance. The experimental diets were formulated by replacing elephant grass in basal diet by bio-char and green tea by-product with the replacement of 0.5 - 1 bio-char and 3% - 5% green tea by-products, respectively to make the content of tannin in the diet of 7.3 g and 12.5 g tannin per kg dry matter. Results from this study revealed that bio-char and green tea by-product included into the diet with different levels had significantly affected on the feed intake, as the increasing level of tannin in the diet tended to increase the feed intake. The inclusion of green tea by-product in the diet which resulted in the content of tannin in the diet of 12.5 g/kg DM had significantly reduced methane emission without altering animal performance, thus the inclusion of 0.5% bio-char and 5% of green tea by-product can be applied in order to mitigate methane emission, thus contributed to environment protection.
基金financed in part by FinCEAL+Program,which provided a grant to participate in a research visit atÅbo Akademi University.
文摘Biobased adsorbents are eco-friendly materials used for water and wastewater treatment and air cleaning.This research work explores the potential use of rice husk chars as a low-cost adsorbent for pollutants from water,such as methylene blue and ethinylestradiol.Rice husk chars are prepared by combustion of rice husks(RH-Char)or pre-treated rice husks(PT-Char).A third char(M-Char)supplied by a local company which uses rice husks as combustion material is also studied.The chars are characterized by field emission scanning electron microscopy(FE-SEM)in conjunction with energy dispersive X-ray spectroscopy(EDX),X-ray powder diffraction(XRD),and zeta-potential measurements.The three bio-chars are tested as adsorbent for the removal of two wastewater contaminants:methylene blue(MB)and ethinylestradiol(EE2).According to the results,RH-Char and PT-Char present zeta-potential values near−52 mV,whereas M-Char shows a zeta-potential value of−32 mV.Both RH-Char and PTChar are rich in amorphous SiO_(2) and M-Char has crystalline SiO_(2)(cristobalite).The bio-chars remove MB and EE2 efficiently showing the following results for the adsorption capacity of MB(inμmol g^(−1)):769.2(RH-Char),41.2(PT-Char),and 31.7(M-Char).The adsorption capacity values for EE2(inμmol g^(−1))are:33.1(RH-Char),19.1(PT-Char),and 16.9(M-Char).The information gathered in the present work evidences the potential of rice husks bio-chars for bio-remediation and may in future contribute to the conversion of a side-stream from the rice industry into value-added materials.
文摘Sludge bio-char(SC)and thermal-alkaline treated sludge bio-char(TSC)were prepared from municipal sewage sludge(RS)and thermal-alkaline treated sludge sediments(STAS)through fast pyrolysis under nitrogen existence condition to remove cationic red X-GRL(A)and cationic yellow X-6G(B)from aqueous solutions.Results of adsorption experiment show that the adsorption capacities of TSC are better than the adsorption capacities of SC.The highest adsorption capacity of 47.65 mg/g for A and 45.41mg/g for B are obtained by TSC in an isotherm experiment at 2.0 g/L dosage and 25°C temperature.TSC adsorption for the two kinds of cationic dyes can be well fitted by pseudo-second-order kinetics model and Langmuir isotherm model.