Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat...Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.展开更多
Based on the decoupiing theory and method, an indicator system was built for the relation between economic development level and resource and environment carrying capacity. And the study was carried out on decoupling ...Based on the decoupiing theory and method, an indicator system was built for the relation between economic development level and resource and environment carrying capacity. And the study was carried out on decoupling degree and temporal changes of economic development level and resource and environment carrying ca- pacity in the central area of Yunnan Province. Results indicated that (i) the economic development level and resource and environment carrying capacity in the central area of Yunnan Province mainly experienced strong decoupling, weak decoupling, and ex- pansive negative coupling, and in general it was strong decoupling, and it took on re- verse "N" in temporal changes. (ii) Change rate of economic development level in the central area of Yunnan Province was greater than zero, but the amplitude of change was not large, while the change rate of resource and environment carrying capacity was negative in 2007-2008, and it was positive in the rest years; from 2007, it took on gradual expansion trend, and scissors difference gradually increased after experi- encing reverse "V" change. (iii) The strong decoupling was the main situation and it reached the peak value in T5 period and T6 pedod.展开更多
The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyz...The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.展开更多
Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy the...Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultim...Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.展开更多
Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connect...Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connection requirements using fixed energy storage capacity configuration methods.In this paper,a method of configuring energy storage capacity is proposed based on the uncertainty of PV power generation.A k-means clustering algorithm is used to classify weather types based on differences in solar irradiance.The power forecast errors in different weather types are analyzed,and an energy storage system is used to compensate for the errors.The kernel density estimation is used to fit the distributions of the daily maximum power and maximum capacity requirements of the energy storage system;the power and capacity of the energy storage unit are calculated at different confidence levels.The optimized energy storage configuration of a PV plant is presented according to the calculated degrees of power and capacity satisfaction.The proposed method was validated using actual operating data from a PV power station.The results indicated that the required energy storage can be significantly reduced while compensating for power forecast errors.展开更多
Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constru...Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.展开更多
Regional environmental carrying capacity (ECC) is nonlinear and spatially specific. A hierarchy index system including resources, environmental and socio-economic elements was established using an analytic hierarchy p...Regional environmental carrying capacity (ECC) is nonlinear and spatially specific. A hierarchy index system including resources, environmental and socio-economic elements was established using an analytic hierarchy process. Principal component analysis (PCA) was used to estimate the regional size and differences of environmental carrying capacities. Main information of four principal components, i.e., carrying capacity of resources supply, carrying capacity of environmental quality, carrying capacity of social economy and carrying capacity of infrastructure construction, was extracted. The ECC evaluation value was divided into five levels of lowest carrying capacity, low carrying capacity, medium carrying capacity, high carrying capacity and highest carrying capacity, respectively. The results showed that on the whole ECC was at the medium carrying capacity level. ECC was generally highest in Guanzhong plain, followed by Loess Plateau, and was lowest in Qiba mountain. The carrying capacity of water resources and environmental quality was relatively low, and the infrastructure carrying capacity was highest among the four components. The temporal spatial variation of ECC was closely related to vulnerability of the natural resources and environment in the regions. Verification was proven that PCA was a useful tool when applied to evaluate ECC and reflect the spatial distribution of large-quantity ECC indices on a large regional scale. This study provides a basis for comprehensive understanding of resources, environment and management for regional balanced development.展开更多
Objective: In this study, one of the objectives was to investigate the total flavonoid contents of Fupenzi (R. chingii Hu.) obtained from different regions of China and to evaluate their anatioxidant activities. And t...Objective: In this study, one of the objectives was to investigate the total flavonoid contents of Fupenzi (R. chingii Hu.) obtained from different regions of China and to evaluate their anatioxidant activities. And the second objective of this study was to develop a validated HPLC method for chromatographic fingerprints of the samples extracts of Fupenzi. Method: The total flavonoid contents were determined by a colorimetric method and the antioxidant activity was determined spectrophotometrically by DPPH and ABTS radical scavenging assays. The chromatographic fingerprint was developed by high-performance liquid chromatography coupled with diode array detection for the control of Fupenzi. Results: A significant correlation between antioxidant activity and the total flavonoid content was observed for the DPPH assay (r2 = 0.758, ρ = 0.004) and the ABTS assay (r2 = 0.788, ρ = 0.002). Under the optimized chromatographic conditions, the validated method was successfully applied to assessment of chemical fingerprinting of 12 batches of FPZ collected from different regions of China. Comparisons of the chromatograms showed that 15 characteristic peaks could be selected as markers for identification and evaluation of Fupenzi. In addition, the proposed method was also successfully applied to simultaneous determination of five compounds (including puerarin, rutin, hyperin, quercetin and kaempferol) in these samples. Conclusions: The qualitative and quantitative analysis described in this paper could be used for identification and evaluation of Fupenzi.展开更多
This paper proposes that it is necessary to implement the concept of tourist carrying capacity to facilitate the tourism planning, and presents a method to evaluate the carrying capacity. The method called matter elem...This paper proposes that it is necessary to implement the concept of tourist carrying capacity to facilitate the tourism planning, and presents a method to evaluate the carrying capacity. The method called matter element analysis can solve the uncertain and incompatible problem of the evaluated factors in assessing carrying capacity.The current state of a destination's carrying capacity can be determined by establishing the standard indexes and the matter element model. Through the evaluating of the travel industry zones of the Autonomous Prefecture of Western Hunan, the method is proved to be simple and feasible, and it is improved to be significant for the tourism planning and determination as well as the sustainable development of the regional tourism.展开更多
Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of ...Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.展开更多
The present study proposes a novel and simplified methodology to assess the seismic bearing capacity(SBC) of a shallow strip footing by incorporating strength non-linearity arising due to partial saturation of a soil ...The present study proposes a novel and simplified methodology to assess the seismic bearing capacity(SBC) of a shallow strip footing by incorporating strength non-linearity arising due to partial saturation of a soil matrix. Furthermore, developed methodology incorporates the modal response analysis of soil layers to assess SBC. A constant matric suction distribution profile has been considered throughout the depth of the soil. The Van Genuchten equation and corresponding fitting parameters have been considered to quantify matric suction in the analysis. SBC has been obtained for three different geomaterials;viz. sand, fly ash and clay, based on their predominant grain size and diverse soil water characteristics curve(SWCC) attributes. Variation of SBC with different modes of vibration and damping ratio are reported for ranges of matric suction pertinent to the geomaterials considered in the study. The relative significance of matric suction on SBC has been reported for suction values within the transition zone of each geomaterial. It is observed that the SBC of sand is drastically reduced, with matric suction reaching beyond the residual suction value. The SBC of fly ash remains constant beyond the residual suction value, whereas the SBC of clay shows an increasing trend toward the practical range of matric suction values.展开更多
Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of exist...Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of existing buildings are designed only for gravity load. The objective of this paper is to assess the seismic performance of existing RC buildings in The Sudan. Four typical buildings were investigated using pushover analysis according to ATC-40. They were designed according to the Regulations for earthquake-resistant design of buildings in Egypt (ESEE) and International Building Code (IBC2012). Results showed that the buildings designed considering by ESEE and IBC2012 loads were found adequate and satisfied the Immediate Occupancy (IO) acceptance criteria according to ATC-40. The comparison of the pushover curve shows that the stiffness of frames is larger when using ESEE Regulations compared to the IBC2012 design. This means that ESEE design procedure provides a greater capability to resist seismic load than the IBC2012 design.展开更多
Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the ...Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the bearing capacity of middle pylon foundation. From the computational results, it is concluded that the caisson foundation has a good bearing capacity on thick overburden layer ground and the beating capacity can be improved assuming that the soil near the area of basal comer is reinforced.展开更多
In this paper, using incremental equilibrium equation, the authors have studiedthe effeet of ultimate bearing capacity of every component on structuralstability, and discussed the stability analysis method for space c...In this paper, using incremental equilibrium equation, the authors have studiedthe effeet of ultimate bearing capacity of every component on structuralstability, and discussed the stability analysis method for space compositestructures. With the help of the test results for the concrete filled ateel tubeskeleton of the long-spen RC arch bridse, it is proved that the proposed methodis accurate and reliable.展开更多
In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of ho...In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of homogeneous seabed soil beneath the rectangular footing are analyzed in detail. According to the equivalent plastic strain of soil under rectangular footing, an allowable velocity field of homogeneous seabed soil is reasonably constructed. Based on the plastic limit analysis theory of soil mass and by using the Mohr-Coulomb yield criterion, an upper bound solution of the ultimate bearing capacity of three-dimensional rectangular footing on general homogeneous seabed soil is derived, and a correction factor of ultimate bearing capacity of three-dimensional rectangular footing is given. To verify the rationality and applicability of this theoretical solution, some numerical solutions are achieved using the general-purpose FEM analysis package ABAQUS, and comparisons are made among the derived upper bound solution, the solution of Vesic, and the solution of Salgado et al. The results indicate that the upper bound solution of the three-dimensional shallowly embedded rectangular footing proposed in this paper is accurate in calculating the bearing capacity of homogeneous seabed soil. For undrained saturated clay foundation and sandy foundation with smaller internal friction angle, this upper bound solution can evaluate the ultimate bearing capacity of rectangular footing; with the gradual increase of the internal friction angle of the soil, the ultimate bearing capacity of the proposed upper bound solution is slightly higher than that of the rectangular footing.展开更多
Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the pe...Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the performance analysis,using the probability density function and numerical calculation,an accurate closedform expression of ergodic capacity of downlink DAS under imperfect CSI is derived.It includes the one under perfect CSI as a special case.This theoretical expression can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI due to its accuracy.Simulation results indicate that the theoretical analysis agrees well with the corresponding simulation,and the capacity can be increased effectively by decreasing the estimation error and/or path loss.展开更多
This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects...This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.展开更多
Due to complicated rock structure and environment, a prototype test for a tunnel-type anchorage is infeasible. Based on the rock mass parameters from tests, a three-dimensional (3D) elastoplastic analysis was perfor...Due to complicated rock structure and environment, a prototype test for a tunnel-type anchorage is infeasible. Based on the rock mass parameters from tests, a three-dimensional (3D) elastoplastic analysis was performed to simulate the influence of the construction procedure of Siduhe bridge with tunnel-type anchorage (TTA) in Hubei Province, China. The surrounding rock and concrete anchorage body were simulated by 8 nodes 3D brick elements. The geostatic state of the complex geometric structure was established with initial data. The in-situ concrete casting of the anchorage body and excavation of the rock mass were simulated by tetrahedral shell elements. The results show that the surrounding rock is in an elastic state under the designed cable force. The numerical overloading analysis indicates that the capacity of the surrounding anchorage is 7 times that of the designed cable force. The failure pattern shows that two anchorage bodies would be pulled out in the end. The maximum shear stress appears 10 m before the back anchorage face. The maximum range influenced by the TTA under ultimate loads is about 16 m.展开更多
Irrigation water became the limiting factor to the persistent improvement of grain production. Based on the data from Gannan County, a semiarid area in the west of Heilongjiang Province, the present situation of the d...Irrigation water became the limiting factor to the persistent improvement of grain production. Based on the data from Gannan County, a semiarid area in the west of Heilongjiang Province, the present situation of the development and utilization of water resources and the suitable water saving irrigation mode were analyzed by using SPA model, which was significant to the efficient and rational utilization of water resources and the improvement of agriculture productivity. The result showed that the model could be applied well to the assessment of development and utilization of water resources and the multi-project optimal selection. Through calculation, it could be found that the utilization of water resources in Gannan County was still in the primary stage, and the integration technology of the optimized water saving irrigation should be combined to support the sustainable development of agriculture in the semiarid area.展开更多
基金supported by the Natural Science Foundation of Hunan Province(2023JJ40078)the Scientific Research Project of Hunan Provincial Education Department(No.22C0573)+2 种基金the National Natural Science Foundation of China(51478477,51878668)Guizhou Provincial Department of Transportation Foundation(2017-122058)Foundation of Guizhou Provincial Science and Technology Department([2018]2815).
文摘Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method.
基金Supported by Scientific Research Foundation of Yunnan Provincial Department of Education(2015J088)~~
文摘Based on the decoupiing theory and method, an indicator system was built for the relation between economic development level and resource and environment carrying capacity. And the study was carried out on decoupling degree and temporal changes of economic development level and resource and environment carrying ca- pacity in the central area of Yunnan Province. Results indicated that (i) the economic development level and resource and environment carrying capacity in the central area of Yunnan Province mainly experienced strong decoupling, weak decoupling, and ex- pansive negative coupling, and in general it was strong decoupling, and it took on re- verse "N" in temporal changes. (ii) Change rate of economic development level in the central area of Yunnan Province was greater than zero, but the amplitude of change was not large, while the change rate of resource and environment carrying capacity was negative in 2007-2008, and it was positive in the rest years; from 2007, it took on gradual expansion trend, and scissors difference gradually increased after experi- encing reverse "V" change. (iii) The strong decoupling was the main situation and it reached the peak value in T5 period and T6 pedod.
基金Supported by Ministry of Metallurgical Industry of China
文摘The prosperous post buckling load capacity of web plates of box girders can be used.In this article,the post buckling behaviour of web plates of box girders under different loading conditions is theoretically analyzed and on the basis of domestic and overseas design codes of steel structures,the corresponding simplified analysis methods are put forward for the engineering design or code revision.It is proved that the simplified methods are safe,efficient and practicable through the comparison between several results.
基金the Key Generalization Program of Science and Tech-nology Achievement of Water Resources Ministry of China (TG0608)
文摘Blind numbers of evaluation indices about groundwater resources carrying capacity are defined from the concomitancy of randomness, fuzziness, grey property and unascertainment of groundwater system. Based on fuzzy theory, a comprehensive evaluation model on groundwater resources carrying capacity is constructed with blind information. Then a risk assessment model of surcharge about groundwater resources carrying capacity is established on blind reliability theory. The probable value "*" matrix of fuzzy membership degree about carrying capacity corresponding to each judgment level can be obtained with the aid of blind algorithm as well as the subjective reliability "×" matrix. And then a graph of "groundwater carrying capacity v.s. accumulative reliability" can be gained Based on the graph, fuzzy membership degree of groundwater resources carrying capacity to each judgment level under different risk probability can be got. Thus, a comparatively reasonable judgment to groundwater resources carrying capacity might be obtained, with comprehensive analysis to the state of society, economy technology and ecology.
基金Project(51478477)supported by the National Natural Science Foundation of ChinaProject(2016CX012)supported by the Innovation-driven Project of Central South University,ChinaProject(2014122006)supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and the associated flow rules,the three-dimensional(3-D)axisymmetric failure mechanism of shallow horizontal circular plate anchors that are subjected to the ultimate pullout capacity(UPC)is determined.A derivative function of the projection function for projecting the 3-D axisymmetric failure surface on plane is deduced using the variation theory.By using difference principle,the primitive function of failure surface satisfying boundary condition and numerical solution to its corresponding ultimate pullout capacity function are obtained.The influences of nonlinear Mohr-Coulomb parameters on UPC and failure mechanism are studied.The result shows that UPC decreases with dimensionless parameter m and uniaxial tensile strength increases but increases when depth and radius of plate anchor,surface overload,initial cohesion,geomaterial density and friction angle increase.The failure surface is similar to a symmetrical spatial funnel,and its shape is mainly determined by dimensionless parameter m;the surface damage range expands with the increase of radius and depth of the plate anchor as well as initial cohesion but decreases with the increase of dimensionless parameter m and uniaxial tensile strength as well as geomaterial density.As the dimensionless parameter m=2.0,the numerical solution of UPC based on the difference principle is proved to be feasible and effective through the comparison with the exact solution.In addition,the comparison between solutions of UPC computed by variation method and those computed by upper bound method indicate that variation method outperforms upper bound method.
基金supported by Nation Key R&D Program of China(2021YFE0102400).
文摘Compensating for photovoltaic(PV)power forecast errors is an important function of energy storage systems.As PV power outputs have strong random fluctuations and uncertainty,it is difficult to satisfy the grid-connection requirements using fixed energy storage capacity configuration methods.In this paper,a method of configuring energy storage capacity is proposed based on the uncertainty of PV power generation.A k-means clustering algorithm is used to classify weather types based on differences in solar irradiance.The power forecast errors in different weather types are analyzed,and an energy storage system is used to compensate for the errors.The kernel density estimation is used to fit the distributions of the daily maximum power and maximum capacity requirements of the energy storage system;the power and capacity of the energy storage unit are calculated at different confidence levels.The optimized energy storage configuration of a PV plant is presented according to the calculated degrees of power and capacity satisfaction.The proposed method was validated using actual operating data from a PV power station.The results indicated that the required energy storage can be significantly reduced while compensating for power forecast errors.
基金Project (51478477) supported by the National Natural Science Foundation of ChinaProject (2016CX012) supported by the Innovation-Driven Project of Central South University,ChinaProject (2014122006) supported by the Guizhou Provincial Department of Transportation Foundation,China
文摘Based on the nonlinear Mohr-Coulomb failure criterion and an associated flow rule,a kinematic admissible velocity field of failure mechanism of the 2-layer soil above a shallow horizontal strip anchor plate is constructed.The ultimate pull-out force and its corresponding failure mechanism through the upper bound limit analysis according to a variation principle are deduced.When the 2-layer overlying soil is degraded into single-layer soil,the model of ultimate pullout force could also be degraded into the model of single-layer soil.And the comparison between results of single-layer soil variation method and those calculated by rigid limit analysis method proves the correctness of our method.Based on that,the influence of changes of geotechnical parameters on ultimate pullout forces and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are analyzed.The results show that the ultimate pull-out force and failure mechanism of a shallow horizontal strip anchor with the 2-layer soil above are affected by the nonlinear geotechnical parameters greatly.Thus,it is very important to obtain the accurate geotechnical parameters of 2-layer soil for the evaluation of the ultimate pullout capacity of the anchor plate.
文摘Regional environmental carrying capacity (ECC) is nonlinear and spatially specific. A hierarchy index system including resources, environmental and socio-economic elements was established using an analytic hierarchy process. Principal component analysis (PCA) was used to estimate the regional size and differences of environmental carrying capacities. Main information of four principal components, i.e., carrying capacity of resources supply, carrying capacity of environmental quality, carrying capacity of social economy and carrying capacity of infrastructure construction, was extracted. The ECC evaluation value was divided into five levels of lowest carrying capacity, low carrying capacity, medium carrying capacity, high carrying capacity and highest carrying capacity, respectively. The results showed that on the whole ECC was at the medium carrying capacity level. ECC was generally highest in Guanzhong plain, followed by Loess Plateau, and was lowest in Qiba mountain. The carrying capacity of water resources and environmental quality was relatively low, and the infrastructure carrying capacity was highest among the four components. The temporal spatial variation of ECC was closely related to vulnerability of the natural resources and environment in the regions. Verification was proven that PCA was a useful tool when applied to evaluate ECC and reflect the spatial distribution of large-quantity ECC indices on a large regional scale. This study provides a basis for comprehensive understanding of resources, environment and management for regional balanced development.
文摘Objective: In this study, one of the objectives was to investigate the total flavonoid contents of Fupenzi (R. chingii Hu.) obtained from different regions of China and to evaluate their anatioxidant activities. And the second objective of this study was to develop a validated HPLC method for chromatographic fingerprints of the samples extracts of Fupenzi. Method: The total flavonoid contents were determined by a colorimetric method and the antioxidant activity was determined spectrophotometrically by DPPH and ABTS radical scavenging assays. The chromatographic fingerprint was developed by high-performance liquid chromatography coupled with diode array detection for the control of Fupenzi. Results: A significant correlation between antioxidant activity and the total flavonoid content was observed for the DPPH assay (r2 = 0.758, ρ = 0.004) and the ABTS assay (r2 = 0.788, ρ = 0.002). Under the optimized chromatographic conditions, the validated method was successfully applied to assessment of chemical fingerprinting of 12 batches of FPZ collected from different regions of China. Comparisons of the chromatograms showed that 15 characteristic peaks could be selected as markers for identification and evaluation of Fupenzi. In addition, the proposed method was also successfully applied to simultaneous determination of five compounds (including puerarin, rutin, hyperin, quercetin and kaempferol) in these samples. Conclusions: The qualitative and quantitative analysis described in this paper could be used for identification and evaluation of Fupenzi.
基金Supported by the Natural Science Foundation of China for Distinguished Young Scholars(No.50425927),the Key Project of National Development and Reform Commission of China(No.2002BA516A15-12),and the Natural Science Foundations of Hunan(No.04JJ3013).
文摘This paper proposes that it is necessary to implement the concept of tourist carrying capacity to facilitate the tourism planning, and presents a method to evaluate the carrying capacity. The method called matter element analysis can solve the uncertain and incompatible problem of the evaluated factors in assessing carrying capacity.The current state of a destination's carrying capacity can be determined by establishing the standard indexes and the matter element model. Through the evaluating of the travel industry zones of the Autonomous Prefecture of Western Hunan, the method is proved to be simple and feasible, and it is improved to be significant for the tourism planning and determination as well as the sustainable development of the regional tourism.
基金Project(51874202) supported by the National Natural Science Foundation of ChinaProject(2017JQ0003) supported by the Sichuan Youth Fund,China。
文摘Considering the fact that in some complex cases,plate anchors are buried in multi-layered geotechnical materials,the ultimate dynamic analysis was performed to investigate the uplift capacity and failure mechanism of shallow strips and circular plate anchors in multi-layered soils.The nonlinear strength criterion and non-associated flow rule of geotechnical materials were introduced to investigate the influence of nonuniformity on the pullout performance and failure mechanism of shallow plate anchors.The expressions of the detaching curves or surfaces were obtained to reflect the failure mechanism,which can be used to figure out the ultimate uplift capacity and failure range.The results are generally in agreement with the numerical simulations and previous research.The effects of various parameters on the ultimate uplift capacity and failure mechanism of plate anchors in multi-layered soils were investigated,and it is found that the ultimate uplift capacity and failure range of shallow anchors increase with the increase of initial cohesion and dilatancy coefficient,but decrease with the unit weight,axial tensile stress and nonlinear coefficient.
文摘The present study proposes a novel and simplified methodology to assess the seismic bearing capacity(SBC) of a shallow strip footing by incorporating strength non-linearity arising due to partial saturation of a soil matrix. Furthermore, developed methodology incorporates the modal response analysis of soil layers to assess SBC. A constant matric suction distribution profile has been considered throughout the depth of the soil. The Van Genuchten equation and corresponding fitting parameters have been considered to quantify matric suction in the analysis. SBC has been obtained for three different geomaterials;viz. sand, fly ash and clay, based on their predominant grain size and diverse soil water characteristics curve(SWCC) attributes. Variation of SBC with different modes of vibration and damping ratio are reported for ranges of matric suction pertinent to the geomaterials considered in the study. The relative significance of matric suction on SBC has been reported for suction values within the transition zone of each geomaterial. It is observed that the SBC of sand is drastically reduced, with matric suction reaching beyond the residual suction value. The SBC of fly ash remains constant beyond the residual suction value, whereas the SBC of clay shows an increasing trend toward the practical range of matric suction values.
文摘Recently, the evaluation of seismic performance of existing buildings has received a great attention. Current research works and observations indicate that The Sudan have low-to-moderate seismic regions. Most of existing buildings are designed only for gravity load. The objective of this paper is to assess the seismic performance of existing RC buildings in The Sudan. Four typical buildings were investigated using pushover analysis according to ATC-40. They were designed according to the Regulations for earthquake-resistant design of buildings in Egypt (ESEE) and International Building Code (IBC2012). Results showed that the buildings designed considering by ESEE and IBC2012 loads were found adequate and satisfied the Immediate Occupancy (IO) acceptance criteria according to ATC-40. The comparison of the pushover curve shows that the stiffness of frames is larger when using ESEE Regulations compared to the IBC2012 design. This means that ESEE design procedure provides a greater capability to resist seismic load than the IBC2012 design.
基金National Science and Technology Support Program of China(No.2009BAG15B02)"333 High-level Personnel Training Project"Special Funded Projects in Jiangsu Province
文摘Because of the computation difficulty of the beating capacity of large underwater caisson foundation on thick overburden layer ground, the geotechnieal software FLAC3D was utilized in the 3D numerical analysis on the bearing capacity of middle pylon foundation. From the computational results, it is concluded that the caisson foundation has a good bearing capacity on thick overburden layer ground and the beating capacity can be improved assuming that the soil near the area of basal comer is reinforced.
文摘In this paper, using incremental equilibrium equation, the authors have studiedthe effeet of ultimate bearing capacity of every component on structuralstability, and discussed the stability analysis method for space compositestructures. With the help of the test results for the concrete filled ateel tubeskeleton of the long-spen RC arch bridse, it is proved that the proposed methodis accurate and reliable.
基金supported by the Project of National Science and Technology Ministry (No. 2014BAB16B03)the National Natural Science Foundation of China (No. 51679224)
文摘In this paper, the finite element analysis software ABAQUS is used to analyze the ultimate bearing capacity of three-dimensional rectangular footing of marine structures. The deformation law and the failure mode of homogeneous seabed soil beneath the rectangular footing are analyzed in detail. According to the equivalent plastic strain of soil under rectangular footing, an allowable velocity field of homogeneous seabed soil is reasonably constructed. Based on the plastic limit analysis theory of soil mass and by using the Mohr-Coulomb yield criterion, an upper bound solution of the ultimate bearing capacity of three-dimensional rectangular footing on general homogeneous seabed soil is derived, and a correction factor of ultimate bearing capacity of three-dimensional rectangular footing is given. To verify the rationality and applicability of this theoretical solution, some numerical solutions are achieved using the general-purpose FEM analysis package ABAQUS, and comparisons are made among the derived upper bound solution, the solution of Vesic, and the solution of Salgado et al. The results indicate that the upper bound solution of the three-dimensional shallowly embedded rectangular footing proposed in this paper is accurate in calculating the bearing capacity of homogeneous seabed soil. For undrained saturated clay foundation and sandy foundation with smaller internal friction angle, this upper bound solution can evaluate the ultimate bearing capacity of rectangular footing; with the gradual increase of the internal friction angle of the soil, the ultimate bearing capacity of the proposed upper bound solution is slightly higher than that of the rectangular footing.
基金supported by the Doctoral Fund of Ministry of Education of China(No.20093218120021)the Fundamental Research Funds for the Central Universities+1 种基金the Research Founding of Graduate Innovation Center in NUAA(Nos.kfjj201429,kfjj20150410)the PARD of Jiangsu Higher Education Institutions,Qing Lan Project of Jiangsu
文摘Considering that perfect channel state information(CSI)is hard to obtain in practice,the capacity of downlink distributed antennas system(DAS)with imperfect CSI is analyzed over Rayleigh fading channel.Based on the performance analysis,using the probability density function and numerical calculation,an accurate closedform expression of ergodic capacity of downlink DAS under imperfect CSI is derived.It includes the one under perfect CSI as a special case.This theoretical expression can provide good performance evaluation for downlink DAS for both perfect and imperfect CSI due to its accuracy.Simulation results indicate that the theoretical analysis agrees well with the corresponding simulation,and the capacity can be increased effectively by decreasing the estimation error and/or path loss.
基金National Natural Science Foundation of China Under Granted No.50538020Youth Science Foundation of Harbin City Under Grand No.2005AFXXJ015Youth Science Foundation of Heilongjiang Institute of Science and Technology
文摘This paper presents a new procedure to transform an SSI system into an equivalent SDOF system using twice equivalence. A pushover analysis procedure based on the capacity spectrum method for buildings with SSI effects (PASSI) is then established based on the equivalent SDOF system, and the modified response spectrum and equivalent capacity spectrum are obtained. Furthermore, the approximate formulas to obtain the dynamic stiffness of foundations are suggested. Three steel buildings with different story heights (3, 9 and 20) including SSI effects are analyzed under two far-field and two near-field historical records and an artificial seismic time history using the two PASSI procedures and the nonlinear response history analysis (NLhRHA) method. The results are compared and discussed. Finally, combined with seismic design response spectrum, the nonlinear seismic response of a 9-story building with SSI effects is analyzed using the PASSI procedures, and its seismic performance is evaluated according to the Chinese 'Code for Seismic Design of Buildings. The feasibility of the proposed procedure is verified.
文摘Due to complicated rock structure and environment, a prototype test for a tunnel-type anchorage is infeasible. Based on the rock mass parameters from tests, a three-dimensional (3D) elastoplastic analysis was performed to simulate the influence of the construction procedure of Siduhe bridge with tunnel-type anchorage (TTA) in Hubei Province, China. The surrounding rock and concrete anchorage body were simulated by 8 nodes 3D brick elements. The geostatic state of the complex geometric structure was established with initial data. The in-situ concrete casting of the anchorage body and excavation of the rock mass were simulated by tetrahedral shell elements. The results show that the surrounding rock is in an elastic state under the designed cable force. The numerical overloading analysis indicates that the capacity of the surrounding anchorage is 7 times that of the designed cable force. The failure pattern shows that two anchorage bodies would be pulled out in the end. The maximum shear stress appears 10 m before the back anchorage face. The maximum range influenced by the TTA under ultimate loads is about 16 m.
基金Supported by Heilongjiang Province Technological and Scientific Research Project(12531051)
文摘Irrigation water became the limiting factor to the persistent improvement of grain production. Based on the data from Gannan County, a semiarid area in the west of Heilongjiang Province, the present situation of the development and utilization of water resources and the suitable water saving irrigation mode were analyzed by using SPA model, which was significant to the efficient and rational utilization of water resources and the improvement of agriculture productivity. The result showed that the model could be applied well to the assessment of development and utilization of water resources and the multi-project optimal selection. Through calculation, it could be found that the utilization of water resources in Gannan County was still in the primary stage, and the integration technology of the optimized water saving irrigation should be combined to support the sustainable development of agriculture in the semiarid area.