Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation env...Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.展开更多
Intelligent and connected vehicles have leveraged edge computing paradigm to enhance their environment comprehension and behavior planning capabilities.As the quantity of intelligent vehicles and the demand for edge c...Intelligent and connected vehicles have leveraged edge computing paradigm to enhance their environment comprehension and behavior planning capabilities.As the quantity of intelligent vehicles and the demand for edge computing are increasing rapidly,it becomes critical to efficiently orchestrate the communication and computation resources on edge clouds.Existing methods usually perform resource allocation in a fairly effective but still reactive manner,which is subject to the capacity of nearby edge clouds.To deal with the contradiction between the spatiotemporally varying demands for edge computing and the fixed edge cloud capacity,we proactively balance the edge computing demands across edge clouds by appropriate route planning.In this paper,route planning and resource allocation are jointly optimized to enhance intelligent driving.We propose a multi-scale decentralized optimization method to deal with the curse of dimensionality.In large-scale optimization,backpressure algorithm is used to conduct route planning and load balancing across edge clouds.In small-scale optimization,game-theoretic multi-agent learning is exploited to perform regional resource allocation.The experimental results show that the proposed algorithm outperforms the baseline algorithms which optimize route planning and resource allocation separately.展开更多
Cognitive radio networks(CRNs) are expected to improve spectrum utilization efficiently by allowing secondary users(SUs) to opportunistically access the licensed spectrum of primary users(PUs).In CRNs,source and desti...Cognitive radio networks(CRNs) are expected to improve spectrum utilization efficiently by allowing secondary users(SUs) to opportunistically access the licensed spectrum of primary users(PUs).In CRNs,source and destination SUs may achieve information interaction in an ad hoc manner.In the case that no direct transmission link between the SU transmission pairs is available,multi-hop relay SUs can be applied to forward information for the source and destination SUs,resulting in multi-hop CRNs.In this paper,we consider a multi-hop CRN consisting of multiple PUs,SU transmission pairs and relay SUs.Stressing the importance of transmission hops and the tradeoff between data rate and power consumption,we propose an energy efficient constrained shortest path first(CSPF)-based joint resource allocation and route selection algorithm,which consists of two sub-algorithms,i.e.,CSPF-based route selection sub-algorithm and energy efficient resource allocation sub-algorithm.More specifically,we first apply CSPF-based route selection sub-algorithm to obtain the shortest candidate routes(SCRs) between the SU pair under the transmission constraints.Then,an energy efficient resource allocation problem of the SCRs is formulated and solved by applying iterative algorithm and Lagrange dual method.Simu-lation results demonstrate the effectiveness of the proposed algorithm.展开更多
An algorithm of traffic distribution called active multi-path routing (AMR)in active network is proposed. AMR adopts multi-path routing and applies nonlinear optimizeapproximate method to distribute network traffic am...An algorithm of traffic distribution called active multi-path routing (AMR)in active network is proposed. AMR adopts multi-path routing and applies nonlinear optimizeapproximate method to distribute network traffic among multiple paths. It is combined to bandwidthresource allocation and the congestion restraint mechanism to avoid congestion happening and worsen.So network performance can be improved greatly. The frame of AMR includes adaptive trafficallocation model, the conception of supply bandwidth and its' allocation model, the principle ofcongestion restraint and its' model, and the implement of AMR based on multi-agents system in activenetwork. Through simulations, AMR has distinct effects on network performance. The results show AMRisa valid traffic regulation algorithm.展开更多
A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy...A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.展开更多
A joint routing and resource partitioning scheme were proposed to improve cell capacity and user throughput of cellular network enhanced with two-hop fixed relay nodes (FRNs). Radio resources are partitioned under a r...A joint routing and resource partitioning scheme were proposed to improve cell capacity and user throughput of cellular network enhanced with two-hop fixed relay nodes (FRNs). Radio resources are partitioned under a reuse partitioning based framework, which guarantees effective and efficient inter-cell interference management. At the same time, each mobile terminal was assigned a channel-dependent route by the routing controller, which tries to maximize the cell capacity under the constraint imposed by reuse partitioning. Intensive computer simulations demonstrate the performance superiority of the FRN enhanced cellular network employing this scheme in comparison with conventional network, as well as the validity of the channel-dependent routing mechanism.展开更多
Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partiti...Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partitioning between the base station and relay nodes was addressed firstly by introducing a metric of effective reuse factor. Then, coverage-oriented and capacity-oriented rantings, as well as two link bandwidth assignment schemes" equal-bandwidth per link" and "equal-bandwidth per mobile station" were developed. These key issues and their impacts on the system performance were analyzed comprehensively and supported by simulations. Results show that the cell capacity and edge user throughput of the proposed network are superior to the traditional non-relay network when an appropriate effective reuse factor is adopted.展开更多
In this paper, an optimal resource allocation strategy is proposed to enhance traffic dynamics in complex networks. The network resources are the total node packet-delivering capacity and the total link bandwidth. An ...In this paper, an optimal resource allocation strategy is proposed to enhance traffic dynamics in complex networks. The network resources are the total node packet-delivering capacity and the total link bandwidth. An analytical method is developed to estimate the overall network capacity by using the concept of efficient betweenness (ratio of algorithmic betweenness and local processing capacity). Three network structures (scale-free, small-world, and random networks) and two typical routing protocols (shortest path protocol and efficient routing protocol) are adopted to demonstrate the performance of the proposed strategy. Our results show that the network capacity is reversely proportional to the average path length for a particular routing protocol and the shortest path protocol can achieve the largest network capacity when the proposed resource allocation strategy is adopted.展开更多
This paper presents a novel energy-aware algorithm for service composition based on sharing routes in Wireless Sensor Networks (WSNs). The method integrates the resource of the overlapping WSNs to a virtual resource p...This paper presents a novel energy-aware algorithm for service composition based on sharing routes in Wireless Sensor Networks (WSNs). The method integrates the resource of the overlapping WSNs to a virtual resource pool in the execution cycles of the workflow. This approach chooses the suitable service instances according to the current execution environment and user requirements with minimum energy consumption. Finally, the performance of sharing routes service composition selection in WSNs has been evaluated.展开更多
Internet of Things(IoT)is a technological revolution that redefined communication and computation of modern era.IoT generally refers to a network of gadgets linked via wireless network and communicates via internet.Re...Internet of Things(IoT)is a technological revolution that redefined communication and computation of modern era.IoT generally refers to a network of gadgets linked via wireless network and communicates via internet.Resource management,especially energy management,is a critical issue when designing IoT devices.Several studies reported that clustering and routing are energy efficient solutions for optimal management of resources in IoT environment.In this point of view,the current study devises a new Energy-Efficient Clustering-based Routing technique for Resource Management i.e.,EECBRM in IoT environment.The proposed EECBRM model has three stages namely,fuzzy logic-based clustering,Lion Whale Optimization with Tumbling(LWOT)-based routing and cluster maintenance phase.The proposed EECBRMmodel was validated through a series of experiments and the results were verified under several aspects.EECBRM model was compared with existing methods in terms of energy efficiency,delay,number of data transmission,and network lifetime.When simulated,in comparison with other methods,EECBRM model yielded excellent results in a significant manner.Thus,the efficiency of the proposed model is established.展开更多
Today’s Internet of Things (IoT) application domains are widely distributed, which exposes them to several security risks and assaults, especially when data is being transferred between endpoints with constrained res...Today’s Internet of Things (IoT) application domains are widely distributed, which exposes them to several security risks and assaults, especially when data is being transferred between endpoints with constrained resources and the backbone network. Numerous researchers have put a lot of effort into addressing routing protocol security vulnerabilities, particularly regarding IoT RPL-based networks. Despite multiple studies on the security of IoT routing protocols, routing attacks remain a major focus of ongoing research in IoT contexts. This paper examines the different types of routing attacks, how they affect Internet of Things networks, and how to mitigate them. Then, it provides an overview of recently published work on routing threats, primarily focusing on countermeasures, highlighting noteworthy security contributions, and drawing conclusions. Consequently, it achieves the study’s main objectives by summarizing intriguing current research trends in IoT routing security, pointing out knowledge gaps in this field, and suggesting directions and recommendations for future research on IoT routing security.展开更多
Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic info...Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic information in the network. Therefore, the controllers can only optimize the network latency of applications. However, the serving latency of applications is also an important factor in delivered user-experience for arrival requests. Unintelligent request routing will cause large serving latency if arrival requests are allocated to overloaded virtual machines. To deal with the request routing problem, this paper proposes the workload-aware software-defined networking controller architecture. Then, request routing algorithms are proposed to minimize the total round trip time for every type of request by considering the congestion in the network and the workload in virtual machines(VMs). This paper finally provides the evaluation of the proposed algorithms in a simulated prototype. The simulation results show that the proposed methodology is efficient compared with the existing approaches.展开更多
Optical Orthogonal Frequency Division Multiplexing (OOFDM) has been proposed as a highly spectrum-efficient modulation technique, which can provide flexible spectrum assignment with fine granularity. In OOFDM-based fl...Optical Orthogonal Frequency Division Multiplexing (OOFDM) has been proposed as a highly spectrum-efficient modulation technique, which can provide flexible spectrum assignment with fine granularity. In OOFDM-based flexible optical networks, Routing and Spectrum Assignment (RSA) has become a key problem. However, widely used dynamic RSA schemes, such as Fixed Routing (FR) and K-shortest Paths (KSP) routing schemes, are not able to realize route computation based on the link state information, thus leading to poor blocking performance and inefficient resource utilization. To solve this problem, Adaptive Routing (AR) schemes, e.g., the Entire Path Searching (EPS) scheme, have been proposed recently. These schemes have low blocking probability; however, since their computational complexities are factorial, they are not suitable for use in real networks. In this paper, we propose a novel Spectrum-Scan Routing (SSR) scheme in dynamic flexible optical networks. To the best of our knowledge, SSR is the first polynomial-time AR scheme that can realize adaptive shortest-route computation. Simulation results show that our proposed SSR scheme has lower blocking probability and higher resource utilization compared with FR and EPS. Moreover, the worst-case computational complexity of SSR increases linearly with the network scale of the torus topologies, making it applicable to real networks.展开更多
基金Project supported by the Natural Science Foundation of Jilin Province of China(Grant No.20210101417JC).
文摘Quantum key distribution(QKD)is a technology that can resist the threat of quantum computers to existing conventional cryptographic protocols.However,due to the stringent requirements of the quantum key generation environment,the generated quantum keys are considered valuable,and the slow key generation rate conflicts with the high-speed data transmission in traditional optical networks.In this paper,for the QKD network with a trusted relay,which is mainly based on point-to-point quantum keys and has complex changes in network resources,we aim to allocate resources reasonably for data packet distribution.Firstly,we formulate a linear programming constraint model for the key resource allocation(KRA)problem based on the time-slot scheduling.Secondly,we propose a new scheduling scheme based on the graded key security requirements(GKSR)and a new micro-log key storage algorithm for effective storage and management of key resources.Finally,we propose a key resource consumption(KRC)routing optimization algorithm to properly allocate time slots,routes,and key resources.Simulation results show that the proposed scheme significantly improves the key distribution success rate and key resource utilization rate,among others.
基金supported in part by the Natural Science Foundation of China under Grant 61902035 and Grant 61876023in part by the Natural Science Foundation of Shandong Province of China under Grant ZR2020LZH005in part by China Postdoctoral Science Foundation under Grant 2019M660565.
文摘Intelligent and connected vehicles have leveraged edge computing paradigm to enhance their environment comprehension and behavior planning capabilities.As the quantity of intelligent vehicles and the demand for edge computing are increasing rapidly,it becomes critical to efficiently orchestrate the communication and computation resources on edge clouds.Existing methods usually perform resource allocation in a fairly effective but still reactive manner,which is subject to the capacity of nearby edge clouds.To deal with the contradiction between the spatiotemporally varying demands for edge computing and the fixed edge cloud capacity,we proactively balance the edge computing demands across edge clouds by appropriate route planning.In this paper,route planning and resource allocation are jointly optimized to enhance intelligent driving.We propose a multi-scale decentralized optimization method to deal with the curse of dimensionality.In large-scale optimization,backpressure algorithm is used to conduct route planning and load balancing across edge clouds.In small-scale optimization,game-theoretic multi-agent learning is exploited to perform regional resource allocation.The experimental results show that the proposed algorithm outperforms the baseline algorithms which optimize route planning and resource allocation separately.
基金supported by the National Science and Technology Specific Project of China(2016ZX03001010-004)National Natural Science Foundation of China(6140105361571073)+2 种基金the Joint Scientifi c Research Fund Ministry of Education and China Mobile(MCM20160105)the special fund of Chongqing key laboratory(CSTC)the project of Chongqing Municipal Education Commission(Kjzh11206)
文摘Cognitive radio networks(CRNs) are expected to improve spectrum utilization efficiently by allowing secondary users(SUs) to opportunistically access the licensed spectrum of primary users(PUs).In CRNs,source and destination SUs may achieve information interaction in an ad hoc manner.In the case that no direct transmission link between the SU transmission pairs is available,multi-hop relay SUs can be applied to forward information for the source and destination SUs,resulting in multi-hop CRNs.In this paper,we consider a multi-hop CRN consisting of multiple PUs,SU transmission pairs and relay SUs.Stressing the importance of transmission hops and the tradeoff between data rate and power consumption,we propose an energy efficient constrained shortest path first(CSPF)-based joint resource allocation and route selection algorithm,which consists of two sub-algorithms,i.e.,CSPF-based route selection sub-algorithm and energy efficient resource allocation sub-algorithm.More specifically,we first apply CSPF-based route selection sub-algorithm to obtain the shortest candidate routes(SCRs) between the SU pair under the transmission constraints.Then,an energy efficient resource allocation problem of the SCRs is formulated and solved by applying iterative algorithm and Lagrange dual method.Simu-lation results demonstrate the effectiveness of the proposed algorithm.
基金Supported by the National Natural Science Foun dation of China(90204008)
文摘An algorithm of traffic distribution called active multi-path routing (AMR)in active network is proposed. AMR adopts multi-path routing and applies nonlinear optimizeapproximate method to distribute network traffic among multiple paths. It is combined to bandwidthresource allocation and the congestion restraint mechanism to avoid congestion happening and worsen.So network performance can be improved greatly. The frame of AMR includes adaptive trafficallocation model, the conception of supply bandwidth and its' allocation model, the principle ofcongestion restraint and its' model, and the implement of AMR based on multi-agents system in activenetwork. Through simulations, AMR has distinct effects on network performance. The results show AMRisa valid traffic regulation algorithm.
基金the Science & Technology Foundation of Huawei Ltd. (No.YJCB2005040SW)the Creative Foundation of Xidian University (No.05030).
文摘A layered network model for optical transport networks is proposed in this paper,which involves Internet Protocol(IP) ,Synchronous Digital Hierarchy(SDH) and Wavelength Division Mul-tiplexing(WDM) layers. The strategy of Dynamic Joint Routing and Resource Allocation(DJRRA) and its algorithm description are also presented for the proposed layered network model. DJRRA op-timizes the bandwidth usage of interface links between different layers and the logic links inside all layers. The simulation results show that DJRRA can reduce the blocking probability and increase network throughput effectively,which is in contrast to the classical separate sequential routing and resource allocation solutions.
文摘A joint routing and resource partitioning scheme were proposed to improve cell capacity and user throughput of cellular network enhanced with two-hop fixed relay nodes (FRNs). Radio resources are partitioned under a reuse partitioning based framework, which guarantees effective and efficient inter-cell interference management. At the same time, each mobile terminal was assigned a channel-dependent route by the routing controller, which tries to maximize the cell capacity under the constraint imposed by reuse partitioning. Intensive computer simulations demonstrate the performance superiority of the FRN enhanced cellular network employing this scheme in comparison with conventional network, as well as the validity of the channel-dependent routing mechanism.
基金Chinese National Science Found for Creative Research Groups (Grant No.60521002)Chinese National Key Technology R&D Program(Grant No.2005BA908B02)Science Foundation of Shanghai Municipal Commission of Science and Technology, Chinese(Grant No.05dz05802)
文摘Radio resource assignment schemes and routing strategies in relay enhanced cellular networks are proposed in this paper. Under the reuse partitioning-based frequency planning framework, the intra-cell resource partitioning between the base station and relay nodes was addressed firstly by introducing a metric of effective reuse factor. Then, coverage-oriented and capacity-oriented rantings, as well as two link bandwidth assignment schemes" equal-bandwidth per link" and "equal-bandwidth per mobile station" were developed. These key issues and their impacts on the system performance were analyzed comprehensively and supported by simulations. Results show that the cell capacity and edge user throughput of the proposed network are superior to the traditional non-relay network when an appropriate effective reuse factor is adopted.
基金Project supported by the National Basic Research Program of China (Grant No. 2012CB725404)the National Natural Science Foundation of China(Grant Nos. 71071044, 71171185, 71201041, 71271075, and 11247291/A05)the Doctoral Program of the Ministry of Education of China (Grant No. 20110111120023)
文摘In this paper, an optimal resource allocation strategy is proposed to enhance traffic dynamics in complex networks. The network resources are the total node packet-delivering capacity and the total link bandwidth. An analytical method is developed to estimate the overall network capacity by using the concept of efficient betweenness (ratio of algorithmic betweenness and local processing capacity). Three network structures (scale-free, small-world, and random networks) and two typical routing protocols (shortest path protocol and efficient routing protocol) are adopted to demonstrate the performance of the proposed strategy. Our results show that the network capacity is reversely proportional to the average path length for a particular routing protocol and the shortest path protocol can achieve the largest network capacity when the proposed resource allocation strategy is adopted.
基金supported by National Natural Science Foundation of China under Grant No. 60833002Natural Science Foundation of Beijing under Grant No.4091003Foundation Sciences of Beijing Jiaotong University under Grant No.2011YJS014
文摘This paper presents a novel energy-aware algorithm for service composition based on sharing routes in Wireless Sensor Networks (WSNs). The method integrates the resource of the overlapping WSNs to a virtual resource pool in the execution cycles of the workflow. This approach chooses the suitable service instances according to the current execution environment and user requirements with minimum energy consumption. Finally, the performance of sharing routes service composition selection in WSNs has been evaluated.
基金This research received the support from the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Program under Grant Number RGP.1/58/42.
文摘Internet of Things(IoT)is a technological revolution that redefined communication and computation of modern era.IoT generally refers to a network of gadgets linked via wireless network and communicates via internet.Resource management,especially energy management,is a critical issue when designing IoT devices.Several studies reported that clustering and routing are energy efficient solutions for optimal management of resources in IoT environment.In this point of view,the current study devises a new Energy-Efficient Clustering-based Routing technique for Resource Management i.e.,EECBRM in IoT environment.The proposed EECBRM model has three stages namely,fuzzy logic-based clustering,Lion Whale Optimization with Tumbling(LWOT)-based routing and cluster maintenance phase.The proposed EECBRMmodel was validated through a series of experiments and the results were verified under several aspects.EECBRM model was compared with existing methods in terms of energy efficiency,delay,number of data transmission,and network lifetime.When simulated,in comparison with other methods,EECBRM model yielded excellent results in a significant manner.Thus,the efficiency of the proposed model is established.
文摘Today’s Internet of Things (IoT) application domains are widely distributed, which exposes them to several security risks and assaults, especially when data is being transferred between endpoints with constrained resources and the backbone network. Numerous researchers have put a lot of effort into addressing routing protocol security vulnerabilities, particularly regarding IoT RPL-based networks. Despite multiple studies on the security of IoT routing protocols, routing attacks remain a major focus of ongoing research in IoT contexts. This paper examines the different types of routing attacks, how they affect Internet of Things networks, and how to mitigate them. Then, it provides an overview of recently published work on routing threats, primarily focusing on countermeasures, highlighting noteworthy security contributions, and drawing conclusions. Consequently, it achieves the study’s main objectives by summarizing intriguing current research trends in IoT routing security, pointing out knowledge gaps in this field, and suggesting directions and recommendations for future research on IoT routing security.
基金supported by the National Postdoctoral Science Foundation of China(2014M550068)
文摘Large latency of applications will bring revenue loss to cloud infrastructure providers in the cloud data center. The existing controllers of software-defined networking architecture can fetch and process traffic information in the network. Therefore, the controllers can only optimize the network latency of applications. However, the serving latency of applications is also an important factor in delivered user-experience for arrival requests. Unintelligent request routing will cause large serving latency if arrival requests are allocated to overloaded virtual machines. To deal with the request routing problem, this paper proposes the workload-aware software-defined networking controller architecture. Then, request routing algorithms are proposed to minimize the total round trip time for every type of request by considering the congestion in the network and the workload in virtual machines(VMs). This paper finally provides the evaluation of the proposed algorithms in a simulated prototype. The simulation results show that the proposed methodology is efficient compared with the existing approaches.
基金supported in part by projects of National 863 Program under Grant No.2012AA011301National 973 Program under Grants No. 2010CB328203, No. 2010CB328205National Natural Science Foundation of China under Grant No. 61201188
文摘Optical Orthogonal Frequency Division Multiplexing (OOFDM) has been proposed as a highly spectrum-efficient modulation technique, which can provide flexible spectrum assignment with fine granularity. In OOFDM-based flexible optical networks, Routing and Spectrum Assignment (RSA) has become a key problem. However, widely used dynamic RSA schemes, such as Fixed Routing (FR) and K-shortest Paths (KSP) routing schemes, are not able to realize route computation based on the link state information, thus leading to poor blocking performance and inefficient resource utilization. To solve this problem, Adaptive Routing (AR) schemes, e.g., the Entire Path Searching (EPS) scheme, have been proposed recently. These schemes have low blocking probability; however, since their computational complexities are factorial, they are not suitable for use in real networks. In this paper, we propose a novel Spectrum-Scan Routing (SSR) scheme in dynamic flexible optical networks. To the best of our knowledge, SSR is the first polynomial-time AR scheme that can realize adaptive shortest-route computation. Simulation results show that our proposed SSR scheme has lower blocking probability and higher resource utilization compared with FR and EPS. Moreover, the worst-case computational complexity of SSR increases linearly with the network scale of the torus topologies, making it applicable to real networks.