Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also ...Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.展开更多
Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medici...Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.展开更多
Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides minin...Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides mining was slow due to lack of reference genome and protein sequence data.In this study,we illustrated full-length transcriptome sequencing to interpret the proteome of CGS meat and obtain 10703 coding DNA sequences.By functional annotation and amino acid composition analysis,we have discovered various genes related to signal transduction,and 16 genes related to longevity.We have also found vast variety of functional peptides through protein coding sequence(CDS)analysis by comparing the data obtained with the functional peptide database.Val-Pro-Ile predicted by the CDS analysis was released from the CGS meat through enzymatic hydrolysis,suggesting that our approach is reliable.This study suggested that transcriptomic analysis can be used as a reference to guide polypeptide mining in CGS meat,thereby providing a powerful mining strategy for the bioresources with unknown genomic and proteomic sequences.展开更多
Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enz...Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enzymeassisted extraction)and novel methods(microwave,ultrasound,supercritical CO_(2),subcritical and other extraction technologies).Walnut oil is rich in nutrients,including phytosterols,tocopherols,polyphenols,squalene and minerals.It provides many health benefits,such as antioxidant,antitumor,anti-inflammatory,antidiabetic and lipid metabolism-related functions.In addition,the authentication of walnut oil has received much research attention.The present review provides detailed research on walnut oil extraction,composition,health benefits and adulteration identification methods.The path toward further walnut oil improvement in the context of the market value of walnut oil is also discussed.展开更多
Xiaoyao San(XYS)is a classic Chinese medicine prescription.It is traditionally used to relieve syndrome of“liver stagnation and spleen deficiency”,a common syndrome type in traditional Chinese medicine,through sooth...Xiaoyao San(XYS)is a classic Chinese medicine prescription.It is traditionally used to relieve syndrome of“liver stagnation and spleen deficiency”,a common syndrome type in traditional Chinese medicine,through soothing liver,tonifying spleen,and nourishing blood.Correspondingly,XYS has long application in the treatment of depression,dyspepsia and liver diseases.Given the rising of cutting-edge researches on XYS,there’s a significant need to diligently uncover the bioactive constituents and action mechanisms of XYS for treating non-alcoholic fatty liver disease accordingly.展开更多
Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This stu...Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This study aims at predicting its bioactive compounds and cancer-related molecular targets against six cancers,including lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.Methods:Network pharmacology and molecular docking methods were performed.Results:Network pharmacology results indicated that 14 core compounds(liensinine,tetrandrine,lysicamine,tricin,sanleng acid,cireneol G,ricinoleic acid,linolenic acid,5,7-dihydroxycoumarin,apigenin,luteolin,morin,quercetin and isorhamnetin)and 10 core targets(AKT1,ESR1,HSP90AA1,JUN,MAPK1,MAPK3,PIK3CA,PIK3R1,SRC and STAT3)were screened for lotus seedpod against the six cancers.Molecular docking analysis suggested that the binding abilities between the core compounds and the core targets were mostly strong.GO analysis revealed that the intersected targets between the bioactive compounds of lotus seedpod and the six cancers were significantly related to biological processes,cell compositions and molecular functions.KEGG analysis showed that PI3K-Akt,TNF,Ras,MAPK,HIF-1 and C-type lectin receptor signaling pathways were notably involved in the anti-cancer activities of lotus seedpod against the six cancers.Conclusions:14 core compounds and 10 core targets were screened for lotus seedpod against lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.This study supports the application of lotus seedpod in treating cancers,and promotes the recycling and the high-value utilization.展开更多
The bioactive glass and related biomaterials have become increasingly popular, and have also attracted the research interest of many researchers in recent years due its special performance and tissue engineering appli...The bioactive glass and related biomaterials have become increasingly popular, and have also attracted the research interest of many researchers in recent years due its special performance and tissue engineering application. In this study, to create a material with a variety of properties Mg doped hollow bioactive glass (Mg-HBG) of 80SiO2-5P2O5-10CaO-5MgO system had been produced by using a sol-gel method. The porous structure nanoparticles were specifically made by employing the cetyltrimethylammonium bromide (CTAB) as a surfactant. Magnesium was selected as a doped material with HBG, because it is the most existing cations in the human body which helps for bone metabolism as well as it has antibacterial property. Based on different investigations resulted nanoparticle with the inclusion of the lower molar fractions magnesium has good tested result. For a drug model vancomycin hydrochloride (VAN) was used in this study and it has also good antibacterial activity effect. These findings help the possibility of using Mg-HBG nanoparticles to treat infectious bone abnormalities by demonstrating their compatibility with antibiotics, drug loading and release behavior.展开更多
Hypertension(HTN),a complex cardiovascular disease(CVD),significantly impacts global health,prompting a growing interest in complementary and alternative therapeutic approaches.This review article seeks to provide an ...Hypertension(HTN),a complex cardiovascular disease(CVD),significantly impacts global health,prompting a growing interest in complementary and alternative therapeutic approaches.This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN,with an emphasis on the molecular mechanisms of action found in substances found in plants,herbs,and seafood.Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies.Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure(BP)-regulating effects of these natural substances better.Polyphenols,flavonoids,alkaloids,and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone,reducing oxidative stress(OS),reducing inflammation,and improving endothelial function.The article explains the vasodilatory,diuretic,and renin-angiotensin-aldosterone system(RAAS)modifying properties of vital plants such as garlic and olive leaf.Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs,providing diverse strategies to combat HTN due to their biological actions.The review also discusses the functions of calcium channel blockers originating from natural sources,angiotensin-converting enzyme(ACE)inhibitors,and nitric oxide(NO)donors.Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN.Omega-3 fatty acids,peptides,and minerals obtained from seafood sources have anti-inflammatory,vasodilatory,and antioxidant properties that improve vascular health and control BP.Overall,we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.展开更多
Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions.Spore discharge(SD)is an important factor affecting the quality of edible mushrooms.In this review,the bioa...Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions.Spore discharge(SD)is an important factor affecting the quality of edible mushrooms.In this review,the bioactive nutrients of sexual spores of edible mushrooms were summarized,the SD mechanism was described,and the relationship between postharvest SD and the quality of edible mushrooms was analyzed.Spores contain various bioactive nutrients that are benefi cial to the human body.Mature mushrooms can actively discharge spores in a process affected by light,relative humidity,and temperature.During storage,the physiological metabolism of spore-bearing gill tissue is vigorous,promoting the release of postharvest spores and changing the nutritional value of fruiting bodies.The flavor of the fruiting bodies also varied signifi cantly during SD.Edible mushroom sexual spores have the potential to become new raw materials for functional food and medical resources.Research on the effect of the mechanism of SD on the quality of edible mushrooms and the development of SD regulation technology may be a new trend in the quality control of edible mushrooms,which will promote the development of the edible mushroom industry.展开更多
Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),...Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke.展开更多
Aegle marmelos, widely known as bael, belongs to the Rutaceae family. It is one of the most inexpensive and appealing fruits, considered to be an essential source of natural antioxidants and bioactive components. The ...Aegle marmelos, widely known as bael, belongs to the Rutaceae family. It is one of the most inexpensive and appealing fruits, considered to be an essential source of natural antioxidants and bioactive components. The major purpose of the research study was to investigate the nutritional composition and bioactive constituents of bael pulp, as well as to develop new value-added products that maintain the maximum quantity of nutrients. The developed food products were subjected to evaluate sensory attributes according to a nine-point hedonic scale. It was found that the moisture, protein, fat, crude fiber, and total ash content of bael fruit pulp were 61.20%, 2.48%, 0.47%, 3.04%, and 1.29%, respectively. When compared to the catechin standard, the antioxidant activity of such extract indicated good antioxidant capacity, with an IC<sub>50</sub> value of 75.68 μg/ml for methanol extract. Vitamin C content was about 10.21 mg/100g. Besides, total flavonoid and phenolic contents were found as 140 mg of Quercetin Equivalent (QE)/g and 106.65 mg of Gallic Acid Equivalent (GAE)/g, respectively. Results of sensory attributes revealed that there was a significant difference (P ba and bael bar. The overall acceptability of bael murabba (6.7) and bael bar (7.1) is acceptable in quality, but their specific characteristics were found slightly different by the test panelists. These products might be applicable for the treatment of several diseases like atherosclerosis, diabetes, constipation, irritable bowel syndrome, peptic ulcer, tumor, and osteoporosis.展开更多
Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bio...Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bioactivity. One fraction pool was observed to exhibit antimicrobial property resulting in the suppression of cell growth of the test organism ATCC 8739 E. coli. It has a MIC value of 1.5% (w/v, 35°C, 20 hr) and could be useful as a new source of prebiotics or preservatives. The present results further confirm the science and useful application of combinatorial enzyme approach.展开更多
Taking the qualified bovine placenta as the research object,a series of pure physical separation and extraction processes such as tissue fragmentation,ultrasound,freeze-thawed,centrifugation and filtration were used t...Taking the qualified bovine placenta as the research object,a series of pure physical separation and extraction processes such as tissue fragmentation,ultrasound,freeze-thawed,centrifugation and filtration were used to prepare the bovine placental bioactive proteins.The results of protein concentration showed that bovine placental bioactive proteins prepared in this study could reach(11.33±2.09)mg/mL under optimal experimental condition.The determination of specific components showed that there were abundant exosome like vesicles in the product with particle size ranging from 30 to 150 nm,pie structure under transmission electron microscope and expressing CD9,CD63 and TSG101 by western blot detection.The results of cell efficacy evaluation showed that bovine placental bioactive proteins could significantly promote the proliferation of human skin fibroblasts and had anti-inflammatory effect via down-regulating IL-6 and TNF-αexpressionin RAW264.7 cells.展开更多
Regenerative medicine and anti-aging research have made great strides at the molecular and cellular levels in dermatology and the medical aesthetic field,targeting potential treatments with skin therapeutic and interv...Regenerative medicine and anti-aging research have made great strides at the molecular and cellular levels in dermatology and the medical aesthetic field,targeting potential treatments with skin therapeutic and intervention pathways,which make it possible to develop effective skin regeneration and repair ingredients.With the rapid development of computational biology,bioinformatics as well as artificial intelligence(A.I.),the development of new ingredients for regenerative medicine has been greatly accelerated,and the success rate has been improved.Some application cases have appeared in topical skin regeneration and repair scenarios.This review will briefly introduce the application of bioactive peptides in skin repair and anti-aging as emerging ingredients in cosmeceutics and emphasize how A.I.based computational biology technology may accelerate the development of innovative peptide molecules and ultimately translate them into potential skin regenerative and anti-aging scenarios.Typically,two research routines have been summarized and current limitations as well as directions were discussed for border applications in future research.展开更多
Diabetes mellitus(DM)is a pressing global public health issue with a high incidence of morbidity and mortality due to its complications.Although there are many medicines available for the treatment of DM,long-term use...Diabetes mellitus(DM)is a pressing global public health issue with a high incidence of morbidity and mortality due to its complications.Although there are many medicines available for the treatment of DM,long-term use causes various adverse effects,such as diarrhea,vomiting,and nausea.Tea,owing to its richness of diverse bioactive components including tea polyphenols,tea polysaccharides,and alkaloids,has displayed promising antidiabetic properties.Screening antidiabetic bioactive compounds derived from teas is receiving increasing attention.Epidemiological and clinical investigations have demonstrated an inverse relationship between tea consumption and the incidence of DM.Both in vitro and in vivo experiments have substantiated the hypoglycemic effects of tea and its bioactive components through several possible mechanisms,including improvement of insulin resistance,inhibition of carbohydrates digestion and absorption(inhibitα-amylase andα-glucosidase activity),regulations of gut microbiota,inflammatory cytokines,and gene and protein expressions in the insulin signaling pathway,as well as amelioration of DM complications.This comprehensive review provides an up-to-date overview of the hypoglycemic properties associated with tea and its bioactive components.It also delves into their potential mechanisms,offering a theoretical foundation for further research into tea's antidiabetic properties and for the development of innovative antidiabetic functional products.展开更多
The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous...The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous extracts. This study therefore investigated and/or assessed the physicochemical parameters, the contents of some metal(loid)s (and their associated potential health risks) and the qualitative composition of bioactive compounds of this anthill soil. The homogenous soil sample collected from various anthill soils in the Oshikoto region was used to obtain the measurements of physiochemical parameters. The elemental contents were determined (using an Inductively Coupled Plasma Optical Emission Spectrophotometer) after acid digestion in accordance with the EPA method 350B and their potential health risk assessments were performed. Methanol, aqueous methanol, and aqueous-based extracts were generated via maceration extraction process prior to the screening of bioactive compounds using standard diagnostic assays. The oxidation reduction potential (164.4 ± 16.6 mV) was the only physicochemical parameter whose value was within the World Health Organization limits for drinking water whereas, total dissolved solids (23 ± 5.5 mg/L), electrical conductivity (44 ± 10.1 uS/cm) and pH (5.35 ± 0.33) were out of specifications. Phenolic compounds, flavonoids, terpenoids, and cardiac glycosides were present in anthill soil (with respect to the extractants used) to which its antihypertensive properties can be attributed in addition to some of the studied mineral components. With respect to the pH, TDS and EC, and the contents of most metal(loid)s in relation to their health risk assessment values, the results suggest that aqueous extracts derived from this anthill soil can be deemed unsuitable for human consumption.展开更多
Antimicrobial-treated textiles should exhibit efficacy against a broad spectrum of bacterial and fungal species,all while maintaining user safety with a non-toxic profile.Natural antimicrobial compounds play a vital r...Antimicrobial-treated textiles should exhibit efficacy against a broad spectrum of bacterial and fungal species,all while maintaining user safety with a non-toxic profile.Natural antimicrobial compounds play a vital role in textile finishing processes.The proliferation of synthetic antimicrobial agents introduces environmental and consumer safety concerns.Given these potential hazards associated with synthetic agents,the utilization of natural antimicrobial agents is gaining traction,as they tend to have fewer adverse effects on users and are more environmentally sustainable.Numerous natural antimicrobial compounds,sourced from plants such as neem,basil,turmeric,aloe vera,and clove oil,have been developed,showcasing inherent antimicrobial properties.This review article highlights the importance of incorporating bioactive components in the creation of antibacterial textile fabrics.展开更多
Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical ...Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical applications. Besides, it is necessary to endow Mg alloys with bioactive property, which is crucial for temporary bone implants. Here, a self-healing, corrosion resistant and bioactive duplex coating of plasma electrolytic oxidization(PEO)/polydopamine(PDA) is applied on AZ91 substrate using PEO and subsequent electrodeposition process. Moreover, the role of different electrodeposition times(60 s, 120 s) and dopamine concentrations(1 and 1.5 mg/ml) to improve corrosion resistance, bioactivity, biocompatibility and self-healing property and its mechanism are investigated. The results indicate that the PEO coating is efficiently sealed by the PDA, depending on the electrodeposition parameters. Noticeably, electrodeposition for 120 s in dopamine concentration of 1 mg/ml(120T-1C) results in the formation of uniform and crack-free PDA coating. Duplex PEO/PDA coatings reveal high bioactivity compared to PEO coating, owing to electrostatic interaction between PDA top-layer and calcium and phosphate ions as well as high hydrophilicity of coatings. In addition, duplex PEO/PDA coatings also show improved and more stable protective performance than the PEO and bare alloy, depending on the PDA deposition parameters. Noticeably, the corrosion current density of the 120T-1C decreases one orders of magnitude compared to PEO. In addition, the presence of a broad passivation region in the anodic polarization branch shows durable self-healing property via Zipper-like mechanism, demonstrating the duplex coating could preserve promising corrosion resistance.Furthermore, the cytocompatibility of duplex coated samples is also confirmed via interaction with MG63 cells. In summary, the PEO/PDA coating with great corrosion protection, self-healing ability, bioactivity and biocompatibility could be a promising candidate for degradable magnesium-based implants.展开更多
Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi...Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi from the gill of a shark (Carcharodon carcharias). A total of 115 isolates were obtained and grown in 12 culture media. Fifty-eight of these isolates demonstrated significant activity in four antimicrobial, pesticidal, and cytotoxic bioassay models. Four randomly selected bioactive isolates inhibited human cancer cell proliferation during re-screening. These active isolates were segregated into 6 genera using the internal transcribed spacer-large subunit (ITS-LSU) rDNA-sequence BLAST comparison. Four genera, Penicillium, Aspergillus, Mucor, and Chaetomium were the dominant taxa. A phylogenic tree illustrated their intergenera and intragenera genetic diversity. HPLC-DAD-HRMS analysis and subsequent database searching revealed that nine representative strains produced diverse bioactive compound profiles. These results detail the broad range of bioactive fimgi found in a shark's gills, revealing their biopharmaceutical potential. To the best of our knowledge, this is the first study characterizing shark gill fungi and their bioactivity.展开更多
Natural products are great treasure troves for the discovery of bioactive components.Current bioassay guided fractionation for identification of bioactive components is time-and workload-consuming.In this study,we pro...Natural products are great treasure troves for the discovery of bioactive components.Current bioassay guided fractionation for identification of bioactive components is time-and workload-consuming.In this study,we proposed a robust and convenient strategy for deciphering the bioactive profile of natural products by mass spectral molecular networking combined with rapid bioassay.As a proof-of-concept,the strategy was applied to identify angiotensin converting enzyme(ACE)inhibitors of Fangjihuangqi decoction(FJHQD),a traditional medicine clinically used for the treatment of heart failure.The chemical profile of FJHQD was comprehensively revealed with the assistance of tandem mass spectral molecular networking,and a total of 165 compounds were identified.With characterized constituents,potential clinical applications of FJHQD were predicted by Bioinformatics Analysis Tool for Molecular mech ANism of Traditional Chinese Medicine,and a range of cardiovascular related diseases were significantly enriched.ACE inhibitory activities of FJHQD and its constituents were then investigated with an aggregation-induced emission based fluorescent probe.FJHQD exhibited excellent ACE inhibitory effects,and a bioactive molecular network was established to elucidate the ACE inhibitory profile of constituents in FJHQD.This bioactive molecular network provided a panoramic view of FJHQD’s ACE inhibitory activities,which demonstrated that flavones from Astragali Radix and Glycyrrhizae Radix et Rhizoma,saponins from Astragali Radix,and sesquiterpenoids from Atractylodis Macrocephalae Rhizoma were principal components responsible for this effect of FJHQD.Among them,four novel ACE inhibitors were the first to be reported.Our study indicated that the proposed strategy offers a useful approach to uncover the bioactive profile of traditional medicines and provides a pragmatic workflow for exploring bioactive components.展开更多
基金supported by the fund from Natural Science Foundation of Zhejiang Province,China(LY17C200017)。
文摘Hericium erinaceus is a nutritious edible and medicinal fungi,rich in a variety of functional active ingredients,with various physiological functions such as antioxidation,anticancer,and enhancing immunity.It is also effective in protecting the digestive system and preventing neurodegenerative diseases.In this review paper,we summarize the sources,structures and efficacies of the main active components in H.erinaceus fruiting body,mycelium,and culture media,and update the latest research progress on their biological activities and the related molecular mechanisms.Based on this information,we provide detailed challenges in current research,industrialization and information on the active ingredients of H.erinaceus.Perspectives for future studies and new applications of H.erinaceus are proposed.
基金supported by the National Natural Science Foundation of China(32170408,32000280,and U1802287)the Ten Thousand Talents Plan of Yunnan Province for Industrial Technology Leading Talents(YNWR-CYJS-2019-011)+2 种基金Yunnan Revitalization Talent Support Program“Top Team”Project(202305AT350001)the Training of Technological Innovation Talents of Yunnan Province(202305AD160009 for Huan Yan)the Project of Yunnan Characteristic Plant Screening and R&D Service CXO Platform(2022YKZY001).
文摘Portulaca oleracea L.,commonly known as purslane,is a worldwide weed species belonging to the family Portulacaceae and has been known as“Global Panacea”.As one of the most widely consumed green vegetables and medicinal plants around the world,it has recently been re-evaluated as a potential“new crop”due to the properties that differentiate it as one of the best vegetable sources of omega-3 fatty acid(α-linolenic acid),as well as a variety of nutrients and phytochemicals.Accordingly,emerging research has found that purslane exhibits health-promoting properties like anti-inflammatory,anti-hyperglycemic,antioxidant,neuroprotective,and immunomodulatory.These findings suggest that this species possesses a potential using as a dietary supplement beyond potherb and traditional medicine.This review systematically summarizes the up-to-date research carried out on purslane,including the nutritional compositions,bioactive compounds,and health benefits it exerts as well as limitations,challenges,and future directions of research.Finally,we hope that this review would provide purslane with a comprehensive reference and future scope as functional and health-promoting food for disease prevention and treatment.
基金funded by Shenzhen Science and Technology Innovation Commission(KCXFZ20201221173207022)。
文摘Andrias davidianus(Chinese giant salamander,CGS)is the largest and oldest extant amphibian species in the world and is a source of prospective functional food in China.However,the progress of functional peptides mining was slow due to lack of reference genome and protein sequence data.In this study,we illustrated full-length transcriptome sequencing to interpret the proteome of CGS meat and obtain 10703 coding DNA sequences.By functional annotation and amino acid composition analysis,we have discovered various genes related to signal transduction,and 16 genes related to longevity.We have also found vast variety of functional peptides through protein coding sequence(CDS)analysis by comparing the data obtained with the functional peptide database.Val-Pro-Ile predicted by the CDS analysis was released from the CGS meat through enzymatic hydrolysis,suggesting that our approach is reliable.This study suggested that transcriptomic analysis can be used as a reference to guide polypeptide mining in CGS meat,thereby providing a powerful mining strategy for the bioresources with unknown genomic and proteomic sequences.
基金The authors would like to thank the National Natural Science Foundation of China Youth Foud(NO:32201947)Key R&D Program Projects of Shaanxi Province,China(NO:2022NY-003)for the financial support.
文摘Walnut oil is a functional wood oil known to researchers that may potentially be a large source of Chinese edible oils.There are various extraction methods for walnut oil,including traditional(pressing,solvent-and enzymeassisted extraction)and novel methods(microwave,ultrasound,supercritical CO_(2),subcritical and other extraction technologies).Walnut oil is rich in nutrients,including phytosterols,tocopherols,polyphenols,squalene and minerals.It provides many health benefits,such as antioxidant,antitumor,anti-inflammatory,antidiabetic and lipid metabolism-related functions.In addition,the authentication of walnut oil has received much research attention.The present review provides detailed research on walnut oil extraction,composition,health benefits and adulteration identification methods.The path toward further walnut oil improvement in the context of the market value of walnut oil is also discussed.
文摘Xiaoyao San(XYS)is a classic Chinese medicine prescription.It is traditionally used to relieve syndrome of“liver stagnation and spleen deficiency”,a common syndrome type in traditional Chinese medicine,through soothing liver,tonifying spleen,and nourishing blood.Correspondingly,XYS has long application in the treatment of depression,dyspepsia and liver diseases.Given the rising of cutting-edge researches on XYS,there’s a significant need to diligently uncover the bioactive constituents and action mechanisms of XYS for treating non-alcoholic fatty liver disease accordingly.
基金This work was funded by the Science and Technology Research Project of Jiangxi Provincial Education Department[GJJ190805&GJJ211507]Jiangxi Provincial Natural Science Foundation[20232BAB215062&20202BABL216081]+1 种基金University-Level Scientific Research Projects of Gannan Medical University[QD201913&QD202128]and the Jiangxi Provincial College Students Innovation and Entrepreneurship Training Programs[S202210413028&S202310413031].
文摘Background:Lotus seedpod(Receptaculum Nelumbinis)is the abundant by-products produced during lotus seed processing,and the sources are usually considered to be wastes and are abandoned outdoors or incinerated.This study aims at predicting its bioactive compounds and cancer-related molecular targets against six cancers,including lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.Methods:Network pharmacology and molecular docking methods were performed.Results:Network pharmacology results indicated that 14 core compounds(liensinine,tetrandrine,lysicamine,tricin,sanleng acid,cireneol G,ricinoleic acid,linolenic acid,5,7-dihydroxycoumarin,apigenin,luteolin,morin,quercetin and isorhamnetin)and 10 core targets(AKT1,ESR1,HSP90AA1,JUN,MAPK1,MAPK3,PIK3CA,PIK3R1,SRC and STAT3)were screened for lotus seedpod against the six cancers.Molecular docking analysis suggested that the binding abilities between the core compounds and the core targets were mostly strong.GO analysis revealed that the intersected targets between the bioactive compounds of lotus seedpod and the six cancers were significantly related to biological processes,cell compositions and molecular functions.KEGG analysis showed that PI3K-Akt,TNF,Ras,MAPK,HIF-1 and C-type lectin receptor signaling pathways were notably involved in the anti-cancer activities of lotus seedpod against the six cancers.Conclusions:14 core compounds and 10 core targets were screened for lotus seedpod against lung cancer,gastric cancer,liver cancer,breast cancer,ovarian cancer and cervical cancer.This study supports the application of lotus seedpod in treating cancers,and promotes the recycling and the high-value utilization.
文摘The bioactive glass and related biomaterials have become increasingly popular, and have also attracted the research interest of many researchers in recent years due its special performance and tissue engineering application. In this study, to create a material with a variety of properties Mg doped hollow bioactive glass (Mg-HBG) of 80SiO2-5P2O5-10CaO-5MgO system had been produced by using a sol-gel method. The porous structure nanoparticles were specifically made by employing the cetyltrimethylammonium bromide (CTAB) as a surfactant. Magnesium was selected as a doped material with HBG, because it is the most existing cations in the human body which helps for bone metabolism as well as it has antibacterial property. Based on different investigations resulted nanoparticle with the inclusion of the lower molar fractions magnesium has good tested result. For a drug model vancomycin hydrochloride (VAN) was used in this study and it has also good antibacterial activity effect. These findings help the possibility of using Mg-HBG nanoparticles to treat infectious bone abnormalities by demonstrating their compatibility with antibiotics, drug loading and release behavior.
文摘Hypertension(HTN),a complex cardiovascular disease(CVD),significantly impacts global health,prompting a growing interest in complementary and alternative therapeutic approaches.This review article seeks to provide an up-to-date and thorough summary of modern therapeutic techniques for treating HTN,with an emphasis on the molecular mechanisms of action found in substances found in plants,herbs,and seafood.Bioactive molecules have been a significant source of novel therapeutics and are crucial in developing and testing new HTN remedies.Recent advances in science have made it possible to understand the complex molecular mechanisms underlying blood pressure(BP)-regulating effects of these natural substances better.Polyphenols,flavonoids,alkaloids,and peptides are examples of bioactive compounds that have demonstrated promise in influencing several pathways involved in regulating vascular tone,reducing oxidative stress(OS),reducing inflammation,and improving endothelial function.The article explains the vasodilatory,diuretic,and renin-angiotensin-aldosterone system(RAAS)modifying properties of vital plants such as garlic and olive leaf.Phytochemicals from plants are the primary in traditional drug development as models for novel antihypertensive drugs,providing diverse strategies to combat HTN due to their biological actions.The review also discusses the functions of calcium channel blockers originating from natural sources,angiotensin-converting enzyme(ACE)inhibitors,and nitric oxide(NO)donors.Including seafood components in this study demonstrates the increased interest in using bioactive chemicals originating from marine sources to treat HTN.Omega-3 fatty acids,peptides,and minerals obtained from seafood sources have anti-inflammatory,vasodilatory,and antioxidant properties that improve vascular health and control BP.Overall,we discussed the multiple functions of bioactive molecules and seafood components in the treatment of HTN.
基金supported by Liaoning Provincial Department of Educational Annual(2019)Scientific Research Fund Project(LSNZD201903)Shenyang Bureau of Science and Technology Annual(2021)Scientific Research Fund Project(21110319)Shenyang Agricultural University,high-end talent introduction fund project(SYAU20160003).
文摘Edible mushroom sexual spores have been gaining more interest due to their bioactive components and functions.Spore discharge(SD)is an important factor affecting the quality of edible mushrooms.In this review,the bioactive nutrients of sexual spores of edible mushrooms were summarized,the SD mechanism was described,and the relationship between postharvest SD and the quality of edible mushrooms was analyzed.Spores contain various bioactive nutrients that are benefi cial to the human body.Mature mushrooms can actively discharge spores in a process affected by light,relative humidity,and temperature.During storage,the physiological metabolism of spore-bearing gill tissue is vigorous,promoting the release of postharvest spores and changing the nutritional value of fruiting bodies.The flavor of the fruiting bodies also varied signifi cantly during SD.Edible mushroom sexual spores have the potential to become new raw materials for functional food and medical resources.Research on the effect of the mechanism of SD on the quality of edible mushrooms and the development of SD regulation technology may be a new trend in the quality control of edible mushrooms,which will promote the development of the edible mushroom industry.
基金financially supported by the 2018 annual three gorges follow-up research project of the three gorges office of the State Council (YYNY-2017-01)
文摘Qingke(highland hull-less barley)is a grain replete with substantial nutrients and bioactive ingredients.In this study,we evaluated the effects of boiling(BO),steaming(ST),microwave baking(MB),far-infrared baking(FB),steam explosion(SE),and deep frying(DF)on bioactive components,phenolic compounds,and antioxidant activities of Qingke compared with the effects of traditional roast(TR).Results showed that the soluble dietary fiber,beta-glucan and water-extractable pentosans of Qingke in dry heat processes of TR,SE,MB and FB had a higher content compared with other thermal methods and had a better antioxidant activity of hydroxyl radical scavenging and a better reduction capacity,while those in wet heat processes of BO and ST had a better antioxidant activity of ABTS radical scavenging and a better Fe^(2+) chelating ability.DF-and SE-Qingke had a higher content of tocopherol,phenolic,and flavonoid.Overall,6 free phenolic compounds and 12 bound phenolic compounds of Qingke were identified,and free phenolic compounds suffered more damage during thermal processing.Principal component analysis showed that SE had more advantages in retaining and improving the main biological active ingredients of Qingke,and it may be the best method for treating Qingke.
文摘Aegle marmelos, widely known as bael, belongs to the Rutaceae family. It is one of the most inexpensive and appealing fruits, considered to be an essential source of natural antioxidants and bioactive components. The major purpose of the research study was to investigate the nutritional composition and bioactive constituents of bael pulp, as well as to develop new value-added products that maintain the maximum quantity of nutrients. The developed food products were subjected to evaluate sensory attributes according to a nine-point hedonic scale. It was found that the moisture, protein, fat, crude fiber, and total ash content of bael fruit pulp were 61.20%, 2.48%, 0.47%, 3.04%, and 1.29%, respectively. When compared to the catechin standard, the antioxidant activity of such extract indicated good antioxidant capacity, with an IC<sub>50</sub> value of 75.68 μg/ml for methanol extract. Vitamin C content was about 10.21 mg/100g. Besides, total flavonoid and phenolic contents were found as 140 mg of Quercetin Equivalent (QE)/g and 106.65 mg of Gallic Acid Equivalent (GAE)/g, respectively. Results of sensory attributes revealed that there was a significant difference (P ba and bael bar. The overall acceptability of bael murabba (6.7) and bael bar (7.1) is acceptable in quality, but their specific characteristics were found slightly different by the test panelists. These products might be applicable for the treatment of several diseases like atherosclerosis, diabetes, constipation, irritable bowel syndrome, peptic ulcer, tumor, and osteoporosis.
文摘Combinatorial enzyme technology was applied for the conversion of wheat insoluble arabinoxylan to oligosaccharide structural variants. The digestive products were fractionated by Bio-Gel P4 column and screened for bioactivity. One fraction pool was observed to exhibit antimicrobial property resulting in the suppression of cell growth of the test organism ATCC 8739 E. coli. It has a MIC value of 1.5% (w/v, 35°C, 20 hr) and could be useful as a new source of prebiotics or preservatives. The present results further confirm the science and useful application of combinatorial enzyme approach.
文摘Taking the qualified bovine placenta as the research object,a series of pure physical separation and extraction processes such as tissue fragmentation,ultrasound,freeze-thawed,centrifugation and filtration were used to prepare the bovine placental bioactive proteins.The results of protein concentration showed that bovine placental bioactive proteins prepared in this study could reach(11.33±2.09)mg/mL under optimal experimental condition.The determination of specific components showed that there were abundant exosome like vesicles in the product with particle size ranging from 30 to 150 nm,pie structure under transmission electron microscope and expressing CD9,CD63 and TSG101 by western blot detection.The results of cell efficacy evaluation showed that bovine placental bioactive proteins could significantly promote the proliferation of human skin fibroblasts and had anti-inflammatory effect via down-regulating IL-6 and TNF-αexpressionin RAW264.7 cells.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030047)Zhejiang Provincial Department of Agriculture and Rural Affairs(2022SNJF078).
文摘Regenerative medicine and anti-aging research have made great strides at the molecular and cellular levels in dermatology and the medical aesthetic field,targeting potential treatments with skin therapeutic and intervention pathways,which make it possible to develop effective skin regeneration and repair ingredients.With the rapid development of computational biology,bioinformatics as well as artificial intelligence(A.I.),the development of new ingredients for regenerative medicine has been greatly accelerated,and the success rate has been improved.Some application cases have appeared in topical skin regeneration and repair scenarios.This review will briefly introduce the application of bioactive peptides in skin repair and anti-aging as emerging ingredients in cosmeceutics and emphasize how A.I.based computational biology technology may accelerate the development of innovative peptide molecules and ultimately translate them into potential skin regenerative and anti-aging scenarios.Typically,two research routines have been summarized and current limitations as well as directions were discussed for border applications in future research.
基金supported by the Zhejiang Province Natural Science Foundation(LR23C160002)the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2023-TRICAAS)the National Natural Science Foundation(32172630 and 31972467).
文摘Diabetes mellitus(DM)is a pressing global public health issue with a high incidence of morbidity and mortality due to its complications.Although there are many medicines available for the treatment of DM,long-term use causes various adverse effects,such as diarrhea,vomiting,and nausea.Tea,owing to its richness of diverse bioactive components including tea polyphenols,tea polysaccharides,and alkaloids,has displayed promising antidiabetic properties.Screening antidiabetic bioactive compounds derived from teas is receiving increasing attention.Epidemiological and clinical investigations have demonstrated an inverse relationship between tea consumption and the incidence of DM.Both in vitro and in vivo experiments have substantiated the hypoglycemic effects of tea and its bioactive components through several possible mechanisms,including improvement of insulin resistance,inhibition of carbohydrates digestion and absorption(inhibitα-amylase andα-glucosidase activity),regulations of gut microbiota,inflammatory cytokines,and gene and protein expressions in the insulin signaling pathway,as well as amelioration of DM complications.This comprehensive review provides an up-to-date overview of the hypoglycemic properties associated with tea and its bioactive components.It also delves into their potential mechanisms,offering a theoretical foundation for further research into tea's antidiabetic properties and for the development of innovative antidiabetic functional products.
文摘The anthill soil is used by hypertensive elderly and teenagers from Oshikoto region (Namibia) and many of them testified stabilization of their blood pressure to normal after consuming the anthill soil-derived aqueous extracts. This study therefore investigated and/or assessed the physicochemical parameters, the contents of some metal(loid)s (and their associated potential health risks) and the qualitative composition of bioactive compounds of this anthill soil. The homogenous soil sample collected from various anthill soils in the Oshikoto region was used to obtain the measurements of physiochemical parameters. The elemental contents were determined (using an Inductively Coupled Plasma Optical Emission Spectrophotometer) after acid digestion in accordance with the EPA method 350B and their potential health risk assessments were performed. Methanol, aqueous methanol, and aqueous-based extracts were generated via maceration extraction process prior to the screening of bioactive compounds using standard diagnostic assays. The oxidation reduction potential (164.4 ± 16.6 mV) was the only physicochemical parameter whose value was within the World Health Organization limits for drinking water whereas, total dissolved solids (23 ± 5.5 mg/L), electrical conductivity (44 ± 10.1 uS/cm) and pH (5.35 ± 0.33) were out of specifications. Phenolic compounds, flavonoids, terpenoids, and cardiac glycosides were present in anthill soil (with respect to the extractants used) to which its antihypertensive properties can be attributed in addition to some of the studied mineral components. With respect to the pH, TDS and EC, and the contents of most metal(loid)s in relation to their health risk assessment values, the results suggest that aqueous extracts derived from this anthill soil can be deemed unsuitable for human consumption.
文摘Antimicrobial-treated textiles should exhibit efficacy against a broad spectrum of bacterial and fungal species,all while maintaining user safety with a non-toxic profile.Natural antimicrobial compounds play a vital role in textile finishing processes.The proliferation of synthetic antimicrobial agents introduces environmental and consumer safety concerns.Given these potential hazards associated with synthetic agents,the utilization of natural antimicrobial agents is gaining traction,as they tend to have fewer adverse effects on users and are more environmentally sustainable.Numerous natural antimicrobial compounds,sourced from plants such as neem,basil,turmeric,aloe vera,and clove oil,have been developed,showcasing inherent antimicrobial properties.This review article highlights the importance of incorporating bioactive components in the creation of antibacterial textile fabrics.
文摘Magnesium(Mg) alloys are well-known in biomedical materials owing to their elastic module near to bone, biocompatibility and biodegradation properties. Nevertheless, poor corrosion resistance hinders their biomedical applications. Besides, it is necessary to endow Mg alloys with bioactive property, which is crucial for temporary bone implants. Here, a self-healing, corrosion resistant and bioactive duplex coating of plasma electrolytic oxidization(PEO)/polydopamine(PDA) is applied on AZ91 substrate using PEO and subsequent electrodeposition process. Moreover, the role of different electrodeposition times(60 s, 120 s) and dopamine concentrations(1 and 1.5 mg/ml) to improve corrosion resistance, bioactivity, biocompatibility and self-healing property and its mechanism are investigated. The results indicate that the PEO coating is efficiently sealed by the PDA, depending on the electrodeposition parameters. Noticeably, electrodeposition for 120 s in dopamine concentration of 1 mg/ml(120T-1C) results in the formation of uniform and crack-free PDA coating. Duplex PEO/PDA coatings reveal high bioactivity compared to PEO coating, owing to electrostatic interaction between PDA top-layer and calcium and phosphate ions as well as high hydrophilicity of coatings. In addition, duplex PEO/PDA coatings also show improved and more stable protective performance than the PEO and bare alloy, depending on the PDA deposition parameters. Noticeably, the corrosion current density of the 120T-1C decreases one orders of magnitude compared to PEO. In addition, the presence of a broad passivation region in the anodic polarization branch shows durable self-healing property via Zipper-like mechanism, demonstrating the duplex coating could preserve promising corrosion resistance.Furthermore, the cytocompatibility of duplex coated samples is also confirmed via interaction with MG63 cells. In summary, the PEO/PDA coating with great corrosion protection, self-healing ability, bioactivity and biocompatibility could be a promising candidate for degradable magnesium-based implants.
基金Supported by the National Natural Science Foundation of China(No.20902009)the National Science Foundation for Post-Doctoral Scientists of China(Nos.2011M500051,2012T50258)+2 种基金the Yang Fan Scarce Top Talent Project of Guangdong Province(to ZHANG Yi)the Program for Scientific Research Start-up Funds of Guangdong Ocean University(GDOU)(to ZHANG Yi)the Natural Science Research Project of GDOU(No.C14519)
文摘Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi from the gill of a shark (Carcharodon carcharias). A total of 115 isolates were obtained and grown in 12 culture media. Fifty-eight of these isolates demonstrated significant activity in four antimicrobial, pesticidal, and cytotoxic bioassay models. Four randomly selected bioactive isolates inhibited human cancer cell proliferation during re-screening. These active isolates were segregated into 6 genera using the internal transcribed spacer-large subunit (ITS-LSU) rDNA-sequence BLAST comparison. Four genera, Penicillium, Aspergillus, Mucor, and Chaetomium were the dominant taxa. A phylogenic tree illustrated their intergenera and intragenera genetic diversity. HPLC-DAD-HRMS analysis and subsequent database searching revealed that nine representative strains produced diverse bioactive compound profiles. These results detail the broad range of bioactive fimgi found in a shark's gills, revealing their biopharmaceutical potential. To the best of our knowledge, this is the first study characterizing shark gill fungi and their bioactivity.
基金financially supported by the National Key R&D Program of China(Grant No.:2018YFC1704502)the National Natural Science Foundation of China(Grant No.:81603268)the National Natural Science Foundation of China(Grant No.:81822047)
文摘Natural products are great treasure troves for the discovery of bioactive components.Current bioassay guided fractionation for identification of bioactive components is time-and workload-consuming.In this study,we proposed a robust and convenient strategy for deciphering the bioactive profile of natural products by mass spectral molecular networking combined with rapid bioassay.As a proof-of-concept,the strategy was applied to identify angiotensin converting enzyme(ACE)inhibitors of Fangjihuangqi decoction(FJHQD),a traditional medicine clinically used for the treatment of heart failure.The chemical profile of FJHQD was comprehensively revealed with the assistance of tandem mass spectral molecular networking,and a total of 165 compounds were identified.With characterized constituents,potential clinical applications of FJHQD were predicted by Bioinformatics Analysis Tool for Molecular mech ANism of Traditional Chinese Medicine,and a range of cardiovascular related diseases were significantly enriched.ACE inhibitory activities of FJHQD and its constituents were then investigated with an aggregation-induced emission based fluorescent probe.FJHQD exhibited excellent ACE inhibitory effects,and a bioactive molecular network was established to elucidate the ACE inhibitory profile of constituents in FJHQD.This bioactive molecular network provided a panoramic view of FJHQD’s ACE inhibitory activities,which demonstrated that flavones from Astragali Radix and Glycyrrhizae Radix et Rhizoma,saponins from Astragali Radix,and sesquiterpenoids from Atractylodis Macrocephalae Rhizoma were principal components responsible for this effect of FJHQD.Among them,four novel ACE inhibitors were the first to be reported.Our study indicated that the proposed strategy offers a useful approach to uncover the bioactive profile of traditional medicines and provides a pragmatic workflow for exploring bioactive components.