Neural degeneration is a very complicated process. In spite of all the advancements in the molecular chemistry, there are many unknown aspects of the phenomena of neurodegeneration which need to be put together. It is...Neural degeneration is a very complicated process. In spite of all the advancements in the molecular chemistry, there are many unknown aspects of the phenomena of neurodegeneration which need to be put together. It is a common sequela of the conditions of niacin deficiency. Neural degeneration in Pellagra manifests as chromatolysis mainly in pyramidal followed by other neurons and glial cells. However, there is a gross lack of understanding of biochemi- cal mechanisms of neurodegeneration in niacin deficiency states. Because of the necessity of niacin or its amide derivative NAD in a number of biochemical pathways, it is understandable that several of these pathways may be involved in the common outcome of neural degener- ation. Here, we highlight five pathways that could be involved in the neuraldegeneration for which evidence has accumulated through several studies. These pathways are: 1) the trypto- phan-kyneurenic acid pathway, 2) the mitochondrial ATP generation related pathways, 3) the poly (ADP-ibose) polymerase (PARP) pathway, 4) the BDNF-TRKB Axis abnormalities, 5) the genetic influences of niacin deficiency.展开更多
The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Ver...The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Very long chain fatty acids(VLCFA),H2O2,and several types of plant展开更多
This literature review examines the mechanisms of how exercise, specifically in the form of resistance training, may lead to pain relief in the cancer population. Primary data from three different cancer populations: ...This literature review examines the mechanisms of how exercise, specifically in the form of resistance training, may lead to pain relief in the cancer population. Primary data from three different cancer populations: breast, prostate, and lung, will be examined. A number of experimental studies have been conducted to confirm the effectiveness of resistance training on pain relief as well as the biochemical pathways that relate to this process. In this review, we will examine 5 randomized controlled trials. For the purposes of this review, pain is defined as physical suffering or discomfort associated with illness. Pain is the body’s natural signal, bringing attention to damage that has been sustained by tissues. However, chronic pain is common in the cancer population, and often serves no good purpose but instead will negatively impact both physical and mental health. The three types of pain: nociceptive, neuropathic, and inflammatory pathways have been investigated, and the knowledge of pain mechanisms allows for the understanding of how it is associated with pain. The purpose of this exploratory literature review is to give insight on how to maximize pain-relieving effects of resistance training. Research has indicated that resistance training modulates pain pathways by upregulating the release of pain-relieving substances including beta-endorphins, anti-inflammatory cytokines, and endocannabinoids. Understanding of the benefits of resistance training may be useful in relieving cancer pain, and reproducing effects of pain-relieving strategies while minimizing the symptoms related to cancer and its treatment.展开更多
文摘Neural degeneration is a very complicated process. In spite of all the advancements in the molecular chemistry, there are many unknown aspects of the phenomena of neurodegeneration which need to be put together. It is a common sequela of the conditions of niacin deficiency. Neural degeneration in Pellagra manifests as chromatolysis mainly in pyramidal followed by other neurons and glial cells. However, there is a gross lack of understanding of biochemi- cal mechanisms of neurodegeneration in niacin deficiency states. Because of the necessity of niacin or its amide derivative NAD in a number of biochemical pathways, it is understandable that several of these pathways may be involved in the common outcome of neural degener- ation. Here, we highlight five pathways that could be involved in the neuraldegeneration for which evidence has accumulated through several studies. These pathways are: 1) the trypto- phan-kyneurenic acid pathway, 2) the mitochondrial ATP generation related pathways, 3) the poly (ADP-ibose) polymerase (PARP) pathway, 4) the BDNF-TRKB Axis abnormalities, 5) the genetic influences of niacin deficiency.
文摘The regulatory mechanism that controls the sustained cotton fiber cell elongation is gradually being elucidated by coupling genome-wide transcriptome profiling with systematic biochemical and physiological studies.Very long chain fatty acids(VLCFA),H2O2,and several types of plant
文摘This literature review examines the mechanisms of how exercise, specifically in the form of resistance training, may lead to pain relief in the cancer population. Primary data from three different cancer populations: breast, prostate, and lung, will be examined. A number of experimental studies have been conducted to confirm the effectiveness of resistance training on pain relief as well as the biochemical pathways that relate to this process. In this review, we will examine 5 randomized controlled trials. For the purposes of this review, pain is defined as physical suffering or discomfort associated with illness. Pain is the body’s natural signal, bringing attention to damage that has been sustained by tissues. However, chronic pain is common in the cancer population, and often serves no good purpose but instead will negatively impact both physical and mental health. The three types of pain: nociceptive, neuropathic, and inflammatory pathways have been investigated, and the knowledge of pain mechanisms allows for the understanding of how it is associated with pain. The purpose of this exploratory literature review is to give insight on how to maximize pain-relieving effects of resistance training. Research has indicated that resistance training modulates pain pathways by upregulating the release of pain-relieving substances including beta-endorphins, anti-inflammatory cytokines, and endocannabinoids. Understanding of the benefits of resistance training may be useful in relieving cancer pain, and reproducing effects of pain-relieving strategies while minimizing the symptoms related to cancer and its treatment.