AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) wa...AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) was mixed with Type I collagen at 10% (weight/volume). The final solution was molded to the shape of a corneal contact lens. The collagen concentrations of 10%, 12.5%, 15%, 17.5% and 20% artificial corneas were tested by UV/vis-spectroscopy for their transparency compared with normal rat cornea. 10-0 sutures were knotted on the edges of substitute to measure the corneal buttons's mechanical properties. Normal rat corneal tissue primary culture on the collagen scaffold was observed in 4 weeks. Histopathologic examinations were performed after 4 weeks of in vitro culturing. RESULTS: The collagen scaffold appearance was similar to that of soft contact lens. With the increase of collagen concentration, the transparency of artificial corneal buttons was diminished, but the toughness of the scaffold was enhanced. The scaffold transparency in the 10% concentration collagen group resembled normal rat cornea. To knot and embed the scaffold under the microscope, 20% concentration collagen group was more effective during implantation than lower concentrations of collagen group. In the first 3 weeks, corneal cell proliferation was highly active. The shapes of cells that grew on the substitute had no significant difference when compared with the cells before they were moved to the scaffold. However, on the fortieth day, most cells detached from the scaffold and died. Histopathologic examination of the primary culture scaffold revealed well grown corneal cells tightly attached to the scaffold in the former culturing. CONCLUSION: Collagen scaffold can be molded to the shape of soft contact corneal lens with NHS/EDC. The biological stability and biocompatibility of collagen from animal species may be used as material in preparing to engineer artificial corneal scaffold.展开更多
Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have bee...Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.展开更多
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria...Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.展开更多
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas...Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.展开更多
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocy...Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.展开更多
Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroot...Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops.展开更多
In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue ap...In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications.展开更多
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace...Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine.展开更多
Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for effi...Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for efficacious cartilage repair,and long-term patient outcomes are not satisfying.Three-dimensional bioprinting has been used to fabricate biochemical and biophysical environments that aim to recapitulate the native microenvironment and promote tissue regeneration.However,conventional in vitro bioprinting has limitations due to the challenges associated with the fabrication and implantation of bioprinted constructs and their integration with the native cartilage tissue.In situ bioprinting is a novel strategy to directly deliver bioinks to the desired anatomical site and has the potential to overcome major shortcomings associated with conventional bioprinting.In this review,we focus on the new frontier of robotic-assisted in situ bioprinting surgical systems for cartilage regeneration.We outline existing clinical approaches and the utilization of robotic-assisted surgical systems.Handheld and robotic-assisted in situ bioprinting techniques including minimally invasive and non-invasive approaches are defined and presented.Finally,we discuss the challenges and potential future perspectives of in situ bioprinting for cartilage applications.展开更多
Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enha...Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enhancement in the production of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid prototyping techniques.Basically,the recreation of ECM has been derived from naturally existed or synthetic hydrogelbased polymers.The rapid utilization of hydrogels in TE puts forward the scope of bioprinfing for the fabrication of the functional biological tissues,cartilage,skin and artificial organs.The main focus of the researchers is on biofabrication of the biomaterials with maintaining the biocompatibility,biodegradability and increasing growth efficiency.In this review, biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed.The methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and after the implantations are also demonstrated.The methodology of bioprinting techniques along with recent development has also been reviewed.In the end,some capabilities and shortcomings are pointed out for further development of hydrogels-based scaffolds and selection of bioprinting technology depending on their application.展开更多
Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and ...Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.展开更多
It has been hypothesized that leaflet substrates with a trilayer structure and anisotropicmechanical properties could be useful for the production of functional and long-lasting tissue-engineered leaflets.To investiga...It has been hypothesized that leaflet substrates with a trilayer structure and anisotropicmechanical properties could be useful for the production of functional and long-lasting tissue-engineered leaflets.To investigate the influence of the anisotropic structural and mechanical characteristics of a substrate on cells,in this study,we electrospun trilayer anisotropic fibrous substrates and randomly oriented isotropic fibrous substrates(used as controls)from polycaprolactone polymers.Consequently,the random substrates had higher radial and lower circumferential tensile properties than the trilayer substrates;however,they had similar flexural properties.Porcine valvular interstitial cells cultured on both substrates produced random and trilayer cell-cultured constructs,respectively.The trilayer cell-cultured constructs had more anisotropic mechanical properties,17%higher cellular proliferation,14%more extracellular matrix(i.e.,collagen and glycosaminoglycan)production,and superior gene and protein expression,suggesting that more cells were in a growth state in the trilayer constructs than in the random constructs.Furthermore,the random and radial layers of the trilayer constructs had more vimentin,collagen,transforming growth factor-beta 1(TGF-ß1),transforming growth factor-beta 3(TGF-ß3)gene expression than in the circumferential layer of the constructs.This study verifies that the differences in structural,tensile,and anisotropic properties of the trilayer and random substrates influence the characteristics of the cells and ECM in the constructs.展开更多
Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ...Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ- tricalcium phosphate (β-TCP) coatings were prepared on and the biodegradation mechanism was simply evaluated the porous Mg to further improve its biocompatibility, in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β- TCP coated porous Mg, which indicates that theβ-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.展开更多
The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In v...The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In vitro, DBM and bone marrow stromal cell (BMSC) from rabbits were co-cultured for 3-7 days and subjected to HE staining, and a series of histomorphological observations were performed under phase-contrast microscopy and scanning electron microscopy (SEM). In vivo the mixture of DBM/BMSC co-cultured for 3 days was planted into one side of muscules sacrospinalis of rabbits, and the DBM without BMSC was planted into other side as control. Specimens were collected at postoperative week 1, 2 and 4, and subjected to HE staining, and observed under SEM. The results showed during culture in vitro, the BMSCs adherent to the wall of DBM grew, proliferated and had secretive activity. The in vivo experiment revealed that BMSCs and undifferentiated mesenchymal cells in the perivascular region invaded gradually and proliferated together in DBM/BMSC group, and colony-forming units of chondrocytes were found. Osteoblasts, trabecular bone and medullary cavity appeared. The inflammatory reaction around muscles almost disappeared at the second weeks. In pure DBM group, the similar changes appeared from the surface of the DBM to center, and the volume of total regenerate bones was less than the DBM/BMSC group at the same time. The results indicated that the mixture of DBM and BMSC had good biocompatibility and ectopic induced osteogenic activity.展开更多
Identifying an effective way to promote bone regeneration for patients who suffer from bone defects is urgently demanded.In recent years,mesenchymal stem cells(MSCs)have drawed wide attention in bone regeneration.Besi...Identifying an effective way to promote bone regeneration for patients who suffer from bone defects is urgently demanded.In recent years,mesenchymal stem cells(MSCs)have drawed wide attention in bone regeneration.Besides,several studies have indicated the secretions of MSCs,especially exosomes,play a vital role in bone regeneration process.Exosomes can transfer“cargos”of proteins,RNA,DNA,lipids,to regulate fate of recipient cells by affecting their proliferation,differentiation,migration and gene expression.In this paper,the application of MSCs-derived exosomes in bone tissue engineering is reviewed,and the potential therapeutic role of exosome microRNA in bone regeneration is emphasized.展开更多
Cartilage and facial muscle tissue provide basic yet vital functions for homeostasis throughout the body, making human survival and function highly dependent upon these somatic components. When cartilage and facial mu...Cartilage and facial muscle tissue provide basic yet vital functions for homeostasis throughout the body, making human survival and function highly dependent upon these somatic components. When cartilage and facial muscle tissues are harmed or completely destroyed due to disease, trauma, or any other degenerative process, homeostasis and basic body functions consequently become negatively affected. Although most cartilage and cells can regenerate themselves after any form of the aforementioned degenerative disease or trauma, the highly specific characteristics of facial muscles and the specific structures of the cells and tissues required for the proper function cannot be exactly replicated by the body itself. Thus, some form of cartilage and bone tissue engineering is necessary for proper regeneration and function. The use of progenitor cells for this purpose would be very beneficial due to their highly adaptable capabilities, as well as their ability to utilize a high diffusion rate, making them ideal for the specific nature and functions of cartilage and facial muscle tissue. Going along with this, once the progenitor cells are obtained, applying them to a scaffold within the oral cavity in the affected location allows them to adapt to the environment and create cartilage or facial muscle tissue that is specific to the form and function of the area. The principal function of the cartilage and tissue is vascularization, which requires a specific form that allows them to aid the proper flow of bodily functions related to the oral cavity such as oxygen flow and removal of waste. Facial muscle is also very thin, making its reproduction much more possible. Taking all these into consideration, this review aims to highlight and expand upon the primary benefits of the cartilage and facial muscle tissue engineering and regeneration, focusing on how these processes are performed outside of and within the body.展开更多
AIM:To develop a new decellularization method depended upon the natural corneal structure and to harvest an ideal scaffold with good biocompatibilities for corneal reconstruction.METHODS:The acellular cornea matrix (A...AIM:To develop a new decellularization method depended upon the natural corneal structure and to harvest an ideal scaffold with good biocompatibilities for corneal reconstruction.METHODS:The acellular cornea matrix (ACM) were prepared from de-epithelium fresh porcine corneas (DFPCs) by incubation with 100% fresh human sera and additional electrophoresis at 4℃. Human corneal epithelial cells (HCEs) were used for the cytotoxicity tests of ACM. ACM were implanted into the Enhanced Green Fluorecence Protein (eGFP) transgenic mouse anterior chamber for evaluation of histocompatibility.RESULTS:HE and GSIB4 results showed fresh porcine cornea matrix with 100% human sera and electrophoresis could entirely decellularize stromal cell without reducing its transparency. ACM has no cytotoxic effect ex vivo. Animal test showed there was no rejection for one month after surgery.CONCLUSION:These results provide a decellularizing approach for the study of corneal tissue engineering and had the broader implications for the field of biological tissue engineering in other engineered organ or tissue matrix.展开更多
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical te...The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental "origin" require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.展开更多
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
基金Scientific and Technological Research Projects of Educational Committee of Liaoning Province of China(No.2008S243)
文摘AIM: To study the optical property and biocompatibility of a tissue engineering cornea. METHODS: The cross-linker of N- (3-Dimethylaminoropyl)-N'ethylcarbodiimide hydrochloride (EDC)/ N-Hydroxysuccinimide (NHS) was mixed with Type I collagen at 10% (weight/volume). The final solution was molded to the shape of a corneal contact lens. The collagen concentrations of 10%, 12.5%, 15%, 17.5% and 20% artificial corneas were tested by UV/vis-spectroscopy for their transparency compared with normal rat cornea. 10-0 sutures were knotted on the edges of substitute to measure the corneal buttons's mechanical properties. Normal rat corneal tissue primary culture on the collagen scaffold was observed in 4 weeks. Histopathologic examinations were performed after 4 weeks of in vitro culturing. RESULTS: The collagen scaffold appearance was similar to that of soft contact lens. With the increase of collagen concentration, the transparency of artificial corneal buttons was diminished, but the toughness of the scaffold was enhanced. The scaffold transparency in the 10% concentration collagen group resembled normal rat cornea. To knot and embed the scaffold under the microscope, 20% concentration collagen group was more effective during implantation than lower concentrations of collagen group. In the first 3 weeks, corneal cell proliferation was highly active. The shapes of cells that grew on the substitute had no significant difference when compared with the cells before they were moved to the scaffold. However, on the fortieth day, most cells detached from the scaffold and died. Histopathologic examination of the primary culture scaffold revealed well grown corneal cells tightly attached to the scaffold in the former culturing. CONCLUSION: Collagen scaffold can be molded to the shape of soft contact corneal lens with NHS/EDC. The biological stability and biocompatibility of collagen from animal species may be used as material in preparing to engineer artificial corneal scaffold.
文摘Nonunion represents a crucial challenge in orthopedic medicine,demanding innovative solutions beyond the scope of traditional bone grafting methods.Among the various strategies available,magnesium(Mg)implants have been recognized for their biocompatibility and biodegradability.However,their susceptibility to rapid corrosion and degradation has garnered notable research interest in bone tissue engineering(BTE),particularly in the development of Mg-incorporated biocomposite scaffolds.These scaffolds gradually release Mg2+,which enhances immunomodulation,osteogenesis,and angiogenesis,thus facilitating effective bone regeneration.This review presents myriad fabrication techniques used to create Mg-incorporated biocomposite scaffolds,including electrospinning,three-dimensional printing,and sol-gel synthesis.Despite these advancements,the application of Mg-incorporated biocomposite scaffolds faces challenges such as controlling the degradation rate of Mg and ensuring mechanical stability.These limitations highlight the necessity for ongoing research aimed at refining fabrication techniques to better regulate the physicochemical and osteogenic properties of scaffolds.This review provides insights into the potential of Mg-incorporated biocomposite scaffolds for BTE and the challenges that need to be addressed for their successful translation into clinical applications.
基金The authors wish to acknowledge Engineering and Physical Sciences Research Council(EPSRC)UK for the Global Challenges Research Fund(No.EP/R015139/1)Rosetrees Trust UK&Stoneygate Trust UK for the Enterprise Fellowship(Ref:M874).
文摘Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
基金supported by the National Natural Science Foundation of China(52003113,31900950,82102334,82002313,82072444)the National Key Research&Development Program of China(2018YFC2001502,2018YFB1105705)+6 种基金the Guangdong Basic and Applied Basic Research Foundation(2021A1515010745,2020A1515110356,2023A1515011986)the Shenzhen Fundamental Research Program(JCYJ20190808120405672)the Key Program of the National Natural Science Foundation of Zhejiang Province(LZ22C100001)the Natural Science Foundation of Shanghai(20ZR1469800)the Integration Innovation Fund of Shanghai Jiao Tong University(2021JCPT03),the Science and Technology Projects of Guangzhou City(202102020359)the Zigong Key Science and Technology Plan(2022ZCNKY07).SXC thanks the financial support under the Startup Grant of the University of Chinese Academy of Sciences(WIUCASQD2021026).HW thanks the Futian Healthcare Research Project(FTWS2022013)the financial support of China Postdoctoral Science Foundation(2021TQ0118).SL thanks the financial support of China Postdoctoral Science Foundation(2022M721490).
文摘Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
基金supported by the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(T2225003,52073060,and 61927805)+3 种基金the Nanjing Medical Science and Technique Development Foundation(ZKX21019)the Clinical Trials from Nanjing Drum Tower Hospital(2022-LCYJ-ZD-01)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038).
文摘Microparticles have demonstrated value for regenerative medicine.Attempts in this field tend to focus on the development of intelligent multifunctional microparticles for tissue regeneration.Here,inspired by erythrocytes-associated self-repairing process in damaged tissue,we present novel biomimetic erythrocyte-like microparticles(ELMPs).These ELMPs,which are composed of extracellular matrix-like hybrid hydrogels and the functional additives of black phosphorus,hemoglobin,and growth factors(GFs),are generated by using a microfluidic electrospray.As the resultant ELMPs have the capacity for oxygen delivery and near-infrared-responsive release of both GFs and oxygen,they would have excellent biocompatibility and multifunctional performance when serving as microscaffolds for cell adhesion,stimulating angiogenesis,and adjusting the release profile of cargoes.Based on these features,we demonstrate that the ELMPs can stably overlap to fill a wound and realize controllable cargo release to achieve the desired curative effect of tissue regeneration.Thus,we consider our biomimetic ELMPs with discoid morphology and cargo-delivery capacity to be ideal for tissue engineering.
基金supported by the National Natural Science Foundation of China(82202352,82271629)the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNLH202202)+1 种基金the China Postdoctoral Science Foundation Funded Project(2023M732711)the Wenzhou Medical University grant(QTJ23004)。
文摘Background:Most bone-related injuries to grassroots troops are caused by training or accidental injuries.To establish preventive measures to reduce all kinds of trauma and improve the combat effectiveness of grassroots troops,it is imperative to develop new strategies and scafolds to promote bone regeneration.Methods:In this study,a porous piezoelectric hydrogel bone scafold was fabricated by incorporating polydopamine(PDA)-modified ceramic hydroxyapatite(PDA-hydroxyapatite,PHA)and PDA-modified barium titanate(PDABaTiO_(3),PBT)nanoparticles into a chitosan/gelatin(Cs/Gel)matrix.The physical and chemical properties of the Cs/Gel/PHA scafold with 0–10 wt%PBT were analyzed.Cell and animal experiments were performed to characterize the immunomodulatory,angiogenic,and osteogenic capabilities of the piezoelectric hydrogel scafold in vitro and in vivo.Results:The incorporation of BaTiO_(3) into the scafold improved its mechanical properties and increased self-generated electricity.Due to their endogenous piezoelectric stimulation and bioactive constituents,the prepared Cs/Gel/PHA/PBT hydrogels exhibited cytocompatibility as well as immunomodulatory,angiogenic,and osteogenic capabilities;they not only effectively induced macrophage polarization to M2 phenotype but also promoted the migration,tube formation,and angiogenic differentiation of human umbilical vein endothelial cells(HUVECs)and facilitated the migration,osteodifferentiation,and extracellular matrix(ECM)mineralization of MC3T3-E1 cells.The in vivo evaluations showed that these piezoelectric hydrogels with versatile capabilities significantly facilitated new bone formation in a rat large-sized cranial injury model.The underlying molecular mechanism can be partly attributed to the immunomodulation of the Cs/Gel/PHA/PBT hydrogels as shown via transcriptome sequencing analysis,and the PI3K/Akt signaling axis plays an important role in regulating macrophage M2 polarization.Conclusion:The piezoelectric Cs/Gel/PHA/PBT hydrogels developed here with favorable immunomodulation,angiogenesis,and osteogenesis functions may be used as a substitute in periosteum injuries,thereby offering the novel strategy of applying piezoelectric stimulation in bone tissue engineering for the enhancement of combat efectiveness in grassroots troops.
文摘In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications.
文摘Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine.
基金the funding provided by the United Kingdom(UK)Engineering and Physical Sciences Research Council(EPSRC)Doctoral Prize Fellowship(EP/R513131/1)。
文摘Articular cartilage damage caused by trauma or degenerative pathologies such as osteoarthritis can result in significant pain,mobility issues,and disability.Current surgical treatments have a limited capacity for efficacious cartilage repair,and long-term patient outcomes are not satisfying.Three-dimensional bioprinting has been used to fabricate biochemical and biophysical environments that aim to recapitulate the native microenvironment and promote tissue regeneration.However,conventional in vitro bioprinting has limitations due to the challenges associated with the fabrication and implantation of bioprinted constructs and their integration with the native cartilage tissue.In situ bioprinting is a novel strategy to directly deliver bioinks to the desired anatomical site and has the potential to overcome major shortcomings associated with conventional bioprinting.In this review,we focus on the new frontier of robotic-assisted in situ bioprinting surgical systems for cartilage regeneration.We outline existing clinical approaches and the utilization of robotic-assisted surgical systems.Handheld and robotic-assisted in situ bioprinting techniques including minimally invasive and non-invasive approaches are defined and presented.Finally,we discuss the challenges and potential future perspectives of in situ bioprinting for cartilage applications.
文摘Recently,tissue engineering (TE)is one of the fast growing research fields due the accessibility of extra-molecular matrix (ECM)at cellular and molecular level with valuable potential prospective of hydrogels.The enhancement in the production of hydrogel-based cellular scaffolds with the structural composition of ECM has been accelerated with involvement of rapid prototyping techniques.Basically,the recreation of ECM has been derived from naturally existed or synthetic hydrogelbased polymers.The rapid utilization of hydrogels in TE puts forward the scope of bioprinfing for the fabrication of the functional biological tissues,cartilage,skin and artificial organs.The main focus of the researchers is on biofabrication of the biomaterials with maintaining the biocompatibility,biodegradability and increasing growth efficiency.In this review, biological development in the structure and cross-linking connections of natural or synthetic hydrogels are discussed.The methods and design criteria that influence the chemical and mechanical properties and interaction of seeding cells before and after the implantations are also demonstrated.The methodology of bioprinting techniques along with recent development has also been reviewed.In the end,some capabilities and shortcomings are pointed out for further development of hydrogels-based scaffolds and selection of bioprinting technology depending on their application.
基金supported by the National Natural Science Foundation of China(Grant no:12272253)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant no:2021SX-AT008,2021SX-AT009).
文摘Bone is a complex but orderly mineralized tissue with hydroxyapatite(HA)as the inorganic phase and collagen as the organic phase.Inspired by natural bone tissues,HA-mineralized hydrogels have been widely designed and used in bone tissue engineering.HA is majorly utilized for the treatment of bone defects because of its excellent osteoconduction and bone inductivity.Hydrogel is a three-dimensional hydrophilic network structure with similar properties to the extracellular matrix(ECM).The combination of HA and hydrogels produces a new hybrid material that could effectively promote osteointegration and accelerate the healing of bone defects.In this review,the structure and growth of bone and the common strategies used to prepare HA were briefly introduced.Importantly,we discussed the fabrication of HA mineralized hydrogels from simple blending to in situ mineralization.We hope this review can provide a reference for the development of bone repair hydrogels.
基金supported by the National Institute of Health(No.NIH R00HL134823).
文摘It has been hypothesized that leaflet substrates with a trilayer structure and anisotropicmechanical properties could be useful for the production of functional and long-lasting tissue-engineered leaflets.To investigate the influence of the anisotropic structural and mechanical characteristics of a substrate on cells,in this study,we electrospun trilayer anisotropic fibrous substrates and randomly oriented isotropic fibrous substrates(used as controls)from polycaprolactone polymers.Consequently,the random substrates had higher radial and lower circumferential tensile properties than the trilayer substrates;however,they had similar flexural properties.Porcine valvular interstitial cells cultured on both substrates produced random and trilayer cell-cultured constructs,respectively.The trilayer cell-cultured constructs had more anisotropic mechanical properties,17%higher cellular proliferation,14%more extracellular matrix(i.e.,collagen and glycosaminoglycan)production,and superior gene and protein expression,suggesting that more cells were in a growth state in the trilayer constructs than in the random constructs.Furthermore,the random and radial layers of the trilayer constructs had more vimentin,collagen,transforming growth factor-beta 1(TGF-ß1),transforming growth factor-beta 3(TGF-ß3)gene expression than in the circumferential layer of the constructs.This study verifies that the differences in structural,tensile,and anisotropic properties of the trilayer and random substrates influence the characteristics of the cells and ECM in the constructs.
基金supported by Chinese Academy of Sciences (The Applied Research of Bioactive Bone Implantation Materials, No. KGCX2-YW-207)
文摘Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactiveβ- tricalcium phosphate (β-TCP) coatings were prepared on and the biodegradation mechanism was simply evaluated the porous Mg to further improve its biocompatibility, in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β- TCP coated porous Mg, which indicates that theβ-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.
文摘The biocompatibility and osteogenic activity of allogenic decalcified bone matrix (DBM) used as a carrier for bone tissue engineering were studied. Following the method described by Urist, allogenic DBM was made. In vitro, DBM and bone marrow stromal cell (BMSC) from rabbits were co-cultured for 3-7 days and subjected to HE staining, and a series of histomorphological observations were performed under phase-contrast microscopy and scanning electron microscopy (SEM). In vivo the mixture of DBM/BMSC co-cultured for 3 days was planted into one side of muscules sacrospinalis of rabbits, and the DBM without BMSC was planted into other side as control. Specimens were collected at postoperative week 1, 2 and 4, and subjected to HE staining, and observed under SEM. The results showed during culture in vitro, the BMSCs adherent to the wall of DBM grew, proliferated and had secretive activity. The in vivo experiment revealed that BMSCs and undifferentiated mesenchymal cells in the perivascular region invaded gradually and proliferated together in DBM/BMSC group, and colony-forming units of chondrocytes were found. Osteoblasts, trabecular bone and medullary cavity appeared. The inflammatory reaction around muscles almost disappeared at the second weeks. In pure DBM group, the similar changes appeared from the surface of the DBM to center, and the volume of total regenerate bones was less than the DBM/BMSC group at the same time. The results indicated that the mixture of DBM and BMSC had good biocompatibility and ectopic induced osteogenic activity.
文摘Identifying an effective way to promote bone regeneration for patients who suffer from bone defects is urgently demanded.In recent years,mesenchymal stem cells(MSCs)have drawed wide attention in bone regeneration.Besides,several studies have indicated the secretions of MSCs,especially exosomes,play a vital role in bone regeneration process.Exosomes can transfer“cargos”of proteins,RNA,DNA,lipids,to regulate fate of recipient cells by affecting their proliferation,differentiation,migration and gene expression.In this paper,the application of MSCs-derived exosomes in bone tissue engineering is reviewed,and the potential therapeutic role of exosome microRNA in bone regeneration is emphasized.
基金Acknowledgements The authors would like to thank the financial supports from Delta Dental, Osteo Science Foundation (Peter Geistlich Award), Marquette Innovation Fund, AFOSR (FA9550-12-1-0225) and NSF (EEC-1160483, ECCS-1351533 and CMMI-1363485).
文摘Cartilage and facial muscle tissue provide basic yet vital functions for homeostasis throughout the body, making human survival and function highly dependent upon these somatic components. When cartilage and facial muscle tissues are harmed or completely destroyed due to disease, trauma, or any other degenerative process, homeostasis and basic body functions consequently become negatively affected. Although most cartilage and cells can regenerate themselves after any form of the aforementioned degenerative disease or trauma, the highly specific characteristics of facial muscles and the specific structures of the cells and tissues required for the proper function cannot be exactly replicated by the body itself. Thus, some form of cartilage and bone tissue engineering is necessary for proper regeneration and function. The use of progenitor cells for this purpose would be very beneficial due to their highly adaptable capabilities, as well as their ability to utilize a high diffusion rate, making them ideal for the specific nature and functions of cartilage and facial muscle tissue. Going along with this, once the progenitor cells are obtained, applying them to a scaffold within the oral cavity in the affected location allows them to adapt to the environment and create cartilage or facial muscle tissue that is specific to the form and function of the area. The principal function of the cartilage and tissue is vascularization, which requires a specific form that allows them to aid the proper flow of bodily functions related to the oral cavity such as oxygen flow and removal of waste. Facial muscle is also very thin, making its reproduction much more possible. Taking all these into consideration, this review aims to highlight and expand upon the primary benefits of the cartilage and facial muscle tissue engineering and regeneration, focusing on how these processes are performed outside of and within the body.
基金National Natural Science Foundation of China (No.81160118,81100648,81101858,81100649)Natural Science Foundation of Jiangxi Province,China (No.20114BAB215029)+3 种基金Technology Foundation of Jiangxi Province,China (No.20111BBG70026-2)Health Department Science and Technology Foundation,China (No.20121026)Education Department Youth Scientific Research Foundation,China (No.JJJ12158)National High Technology Research of China (863 project)(No.2006AA02A131)
文摘AIM:To develop a new decellularization method depended upon the natural corneal structure and to harvest an ideal scaffold with good biocompatibilities for corneal reconstruction.METHODS:The acellular cornea matrix (ACM) were prepared from de-epithelium fresh porcine corneas (DFPCs) by incubation with 100% fresh human sera and additional electrophoresis at 4℃. Human corneal epithelial cells (HCEs) were used for the cytotoxicity tests of ACM. ACM were implanted into the Enhanced Green Fluorecence Protein (eGFP) transgenic mouse anterior chamber for evaluation of histocompatibility.RESULTS:HE and GSIB4 results showed fresh porcine cornea matrix with 100% human sera and electrophoresis could entirely decellularize stromal cell without reducing its transparency. ACM has no cytotoxic effect ex vivo. Animal test showed there was no rejection for one month after surgery.CONCLUSION:These results provide a decellularizing approach for the study of corneal tissue engineering and had the broader implications for the field of biological tissue engineering in other engineered organ or tissue matrix.
文摘The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental "origin" require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.