Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature ph...Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.展开更多
A new fluorescent probe RY was synthesized for the detection of Au3+ions based on a rhodamine B derivative.The fluorescent probe showed good selectivity and sensitivity to Au3+ions.Obvious color and fluorescence chang...A new fluorescent probe RY was synthesized for the detection of Au3+ions based on a rhodamine B derivative.The fluorescent probe showed good selectivity and sensitivity to Au3+ions.Obvious color and fluorescence changes could be observed with the naked eye while the fluorescent probe reacted with the Au3+ions.The detection limit of the probe was determined to be 36 ppb by the fluorescence titration.The excellent linear relationship suggests that the probe is potentially useful for quantitative detection of Au3+in vitro.We also demonstrated its bioimaging application in both living cells and mice.This was the first time that a fluorescent probe was successfully applied to imaging Au3+in living animals.展开更多
Formaldehyde, as one of the simplest reactive carbonyl species(RCS), is regarded as a potential carcinogen and a sick house syndrome gas. Recent studies have shown that abnormally high levels of formaldehyde may res...Formaldehyde, as one of the simplest reactive carbonyl species(RCS), is regarded as a potential carcinogen and a sick house syndrome gas. Recent studies have shown that abnormally high levels of formaldehyde may result in cognitive decline and spatial memory deficits, asthmatic symptoms,Alzheimer's disease, and cancer. Due to the harmfulness of high levels of formaldehyde in nature and humans, it is of great significance to further elucidate the roles and functions of formaldehyde by a noninvasive detection approach. Fluorescence imaging has become a powerful and popular tool in monitoring bio-species owing to their high sensitivity and selectivity, excellent spatiotemporal resolution and non-invasion nature. Therefore, fluorescent probes are widely applied to track and detect formaldehyde in vitro and in vivo which have attracted more and more interest recently. This review focuses on various strategies to design the fluorescent probes for detecting formaldehyde based on different recognition groups.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.21871060,21864020)the Grassland Talent Program of Inner Mongolia Autonomous Region of China,the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Nos.2020JQ02,2020MS02004)the Natural Science Foundation of Jiangxi Province of China(No.20192BCBL23013).
文摘Bioimaging,as a powerful and helpful tool,which allows people to investigate deeply within living organisms,has contributed a lot for both clinical theranostics and scientific research.Pure organic room temperature phosphorescence(RTP)materials with the unique features of ultralong luminescence lifetime and large Stokes shift,can efficiently avoid biological autofluorescence and scattered light through a time-resolved imaging modality,and thus are attracting increasing attention.This review classifies pure organic RTP materials into three categories,including small molecule RTP materials,polymer RTP materials and supramolecular RTP materials,and summarizes the recent advances of pure organic RTP materials for bioimaging applications.
基金supported financially by the National Natural Science Foundation of China(21222605,21006009,21136002,21376039)the Fundamental Research Funds for the Central Universities of China+1 种基金the Program for New Century Excellent Talents in Universitythe project sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education
文摘A new fluorescent probe RY was synthesized for the detection of Au3+ions based on a rhodamine B derivative.The fluorescent probe showed good selectivity and sensitivity to Au3+ions.Obvious color and fluorescence changes could be observed with the naked eye while the fluorescent probe reacted with the Au3+ions.The detection limit of the probe was determined to be 36 ppb by the fluorescence titration.The excellent linear relationship suggests that the probe is potentially useful for quantitative detection of Au3+in vitro.We also demonstrated its bioimaging application in both living cells and mice.This was the first time that a fluorescent probe was successfully applied to imaging Au3+in living animals.
基金support from National Natural Science Foundation of China (Nos. 21676113, 21402057, 21472059, 81671803) Youth Chen-Guang Project of Wuhan(2016070204010098)+2 种基金 the 111 Project B17019the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, Shenzhensupported by self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (No. CCNU16A02004)
文摘Formaldehyde, as one of the simplest reactive carbonyl species(RCS), is regarded as a potential carcinogen and a sick house syndrome gas. Recent studies have shown that abnormally high levels of formaldehyde may result in cognitive decline and spatial memory deficits, asthmatic symptoms,Alzheimer's disease, and cancer. Due to the harmfulness of high levels of formaldehyde in nature and humans, it is of great significance to further elucidate the roles and functions of formaldehyde by a noninvasive detection approach. Fluorescence imaging has become a powerful and popular tool in monitoring bio-species owing to their high sensitivity and selectivity, excellent spatiotemporal resolution and non-invasion nature. Therefore, fluorescent probes are widely applied to track and detect formaldehyde in vitro and in vivo which have attracted more and more interest recently. This review focuses on various strategies to design the fluorescent probes for detecting formaldehyde based on different recognition groups.