The early RBE of the bone marrow in mice after studied irradiation with fast neutrons(35 MeVp→Be) was studied.60Co-γ ray was used for referent beams.Using the dos.making 50% loss of the nucleated cells of bone marro...The early RBE of the bone marrow in mice after studied irradiation with fast neutrons(35 MeVp→Be) was studied.60Co-γ ray was used for referent beams.Using the dos.making 50% loss of the nucleated cells of bone marrow in mice relative to control group mice to calculated the RBE value which was 2.13±0.18.Meanwhile,the relationship of the RBE values and the dose of neutrons was noted.On log-log plot the RBE values decrease with increasing dose of fast neutrons and it is consistent with a slope of -0.39± 0.10.The α/β ratios were estimated from linear-quadratic model of cell survival,they are 14.4±1.30 Gy for fast neutrons and 0.83±0.10 Gy for γ-ray,respectively.展开更多
The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differenti...The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human fibroblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/μm, and 1.33 for LET 13.7 keV/μm carbon ions. RBE for a doubling of post-mitotic fibroblasts (PMF) in the population was 2.8 for LET 172 keV/μm, and 1 for LET 13.7 keV/μm carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.展开更多
[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the...[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the test. Growth, photosynthesis and chlorophyll fluorescence parameters at flowering stage such as plant height, stem diameter, shoot and root dry matter, net photosynthesis, light energy conversion effi- ciency (Fv/Fm) and SPAD value, were investigated. The effects of fertilizer treat-ments on the yield of rapeseed were evaluated as well. [Result] Both multi-functional fertilizer and controlled release fertilizer could improve plant height, stem diameter, shoot dry matter, SPAD value, net photosynthesis, non-photochemical quenching (NPQ), etc., which helped increase yield and stress resistance. [Conclusion] Both multi-functional fertilizer and controlled release fertilizer could improve yield significantly while multi-functional fertilizer (MFF) was better than controlled release fertilizer (CRF).展开更多
Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biot...Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.展开更多
With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide ap...With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.展开更多
Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of vari...Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.展开更多
Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different siz...Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different sizes on cardiovascular cells have not been well recognized. In this study, sub-cultured human umbilical vein endothelial cells (HUVECs) were exposed to increasing concentrations of pure quartz particles (DQ) of three sizes (DQPM1, 〈1 μm; DQPM3-5, 3-5 μm; DQPM5, 5 μm) and carbon black particles of two sizes (CB0.1, 〈0.1 μm; CB 1, 〈 1 μm) for 24 h. Cytotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) and cell viability. Nitric oxide (NO) generation and cyto- kines (TNF-α and IL-1β) releases were analyzed by using NO assay and enzyme-linked immunoabsorbent assay (ELISA), respectively. It was found that both particles induced adverse biological effects on HUVECs in a dose-dependent manner. The size of particle directly influenced the biological activity. For quartz, the smaller particles induced stronger cytotoxicity and higher levels of cytokine responses than those particles of big size. For carbon black particles, CB0.1 was more capable of inducing adverse responses on HUVECs than CB 1 only at lower particle concentrations, in contrast to those at higher concentrations. Meanwhile, our data also revealed that quartz particles performed stronger cell damage and produced higher levels of TNF-α than carbon black particles, even if particles size was similar. In conclusion, particle size as well as particle composition should be both considered in assessing vascular endothelial cells injury and inflammation responses induced by particles.展开更多
Tourmaline can promote the growth of microorganisms under the temperature less than 900 ℃ by experiment. However, this promotion effect will vanish at 900 ℃ as a result of denaturation. Through the XRD analysis the ...Tourmaline can promote the growth of microorganisms under the temperature less than 900 ℃ by experiment. However, this promotion effect will vanish at 900 ℃ as a result of denaturation. Through the XRD analysis the crystal form change can explain the vanishment of tourmaline’s biological promotion effect at high temperature. Therefore, tourmaline as a biological promoter was used to prepare a kind of biological promotive ceramsite with the surface area of 7.914 m2/g, pore volume of 0.1002 mg/L, superficial pH value of 7.8, Zeta potential of 25 mV, unit water absorption of 0.1365 g/g, biocompatibility of 0.023 A/g and SICE of 0.8456. The experimental results show that the biomass of biological promotive ceramsite is 3.58 times more than that of ordinary ceramsite, and the treatment effect of the biological promotive ceramsite is better than the ordinary ceramsite. These features of this new biological promotive ceramsite makes it a preferable biovector.展开更多
[ Objective] This study aimed to investigate the biological effects of laser-induced mutation on fibrous roots of yellow skin onion. [ Method] Wet seeds of two yellow skin onion cultivars were irradiated by CO2 laser ...[ Objective] This study aimed to investigate the biological effects of laser-induced mutation on fibrous roots of yellow skin onion. [ Method] Wet seeds of two yellow skin onion cultivars were irradiated by CO2 laser and He-Ne laser at three dosage levels separately. A randomized complete block design with three replications was adopted. The biological effects of laser-induced mutation on fibrous roots of Ll-generation yellow skin onion were investigated with biostatistics and physiological and biochemical methods. [Result] Significant variations in the biological effects caused by various laser treatments were observed in the length, quantity, fresh weight and activity of onion fibrous roots. Specifically, the variation in fibrous root length induced by different types of laser reached 5% significance level; significant variation was observed in fibrous roots of different onion cultivars induced by laser, while the variation among each treatment did not reach 5% sig- nifieance level ; the variation in fibrous root quantity induced by different dosage levels of laser reached 5% significance level ; laser radiation showed stimulating effect on root activity of onion. [ Conclusion] This study provided reference for laser-induced breeding of yellow skin onion.展开更多
Objective: To explore the possible biological function of human nuclear receptor hLRH-1 in tumorigenesis and progress of colon cancer. Methods: Plasmids pcDNA3-hLRH-1 were introduced into SW480 cells via lipofectami...Objective: To explore the possible biological function of human nuclear receptor hLRH-1 in tumorigenesis and progress of colon cancer. Methods: Plasmids pcDNA3-hLRH-1 were introduced into SW480 cells via lipofectamine. The expression of mRNA and protein of exogenous hLRH-1 were detected by RT-PCR and western blotting, respectively. MTT assay was carried out to survey the proliferation of SW480 cells with overexpression of hLRH-1. Meanwhile, the expression of proliferation-related genes cyclin E1 and cyclin D1, and apoptosis-related genes PTEN and Rbl, were analyzed by realtime RT-PCR. Results: The proliferation of SW480 cells was promoted under the condition of overexpression of hLRH-1. The expression of cyclin E1 was up-regulated significantly, while that of PTEN and Rbl were down-regulated in SW480 cells with overexpressed hLRH-1. Conclusion: The expression of exogenous hLRH-1 in SW480 cells induced the proliferation resulting form up-regulation of cyclin E1, as well as participated in the regulation of apoptosis via influencing the expression of PTEN and Rb1.展开更多
[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36...[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.展开更多
Based on the biological action spectra and total UV-B radiation in the atmosphere,the effective UV-dose for DNA, erythema,and plant at different seasons in the last decade,and their future change in Beijing area were ...Based on the biological action spectra and total UV-B radiation in the atmosphere,the effective UV-dose for DNA, erythema,and plant at different seasons in the last decade,and their future change in Beijing area were calculated.Computation results indicate that the maxi- mum of biologically effective radiation dose at noontime is in July and the minimum is in January. From 1980 to 1989 biologically effective radiation dose have increased with the average rates of about 0.6,0.7 and 1.1 mW/m ̄2 per year for January, April and October,while in July the trend of radiation dose is not ln evidence. For 1% reduction of ozone concentration radiation amplification factor for DNA,erythema and plant are 2.3,2.3 and 1.4 and for 30% reduction of ozone concentration the RAF for DNA,erythema and plant are 4.2,4.0 and 2.1,respectively.展开更多
Objective To show the distribution of facial exposure to non-melanoma biologically effective UV irradiance changes by rotation angles. Methods This study selected the cheek, nose, and forehead as representative facial...Objective To show the distribution of facial exposure to non-melanoma biologically effective UV irradiance changes by rotation angles. Methods This study selected the cheek, nose, and forehead as representative facial sites for UV irradiance measurements, which were performed using a rotating manikin and a spectroradiometer. The measured UV irradiance was weighted using action spectra to calculate the biologically effective UV irradiances that cause non-melanoma (UVBEnon.rnel) skin cancer. The biologically effective UV radiant exposure (HBEnon-mel) was calculated by summing the UVBEnon-mel data collected over the exposure period. Results This study revealed the following: (1) the maximum cheek, nose and forehead exposure UVA and UVB irradiance times and solar elevation angles (SEA) differed from those of the ambient UV irradiance and were influenced by the rotation angles; (2) the UV irradiance exposure increased in the following order: cheek 〈 nose 〈 forehead; (3) the distribution of UVBEnon-mel irradiance differed from that of unweighted UV radiation (UVR) and was influenced by the rotation angles and exposure times; and (4) the maximum percentage decreases in the UVBEnon-melradiant exposure for the cheek, nose and forehead from 0° to 180° were 48.41%, 69.48% and 71.71%, respectively. Conclusion Rotation angles relative to the sun influence the face's exposure to non-melanoma biologically effective UV.展开更多
Using alkalescent ammonium(AAC)as precipitatnt, the diameter of nano La_2O_3 powder with diameter in 80 nm and less was prepared by the method of homogeneous precipitation, and reactant concentration, temperature and ...Using alkalescent ammonium(AAC)as precipitatnt, the diameter of nano La_2O_3 powder with diameter in 80 nm and less was prepared by the method of homogeneous precipitation, and reactant concentration, temperature and pH were studied and confirmed. The best precipitated concentration is from 0.2 to 0.5 mol·L^(-1), and the diameter of compounded powder turns small as the temperature gradually becomes high, and the pH from 6 to 8 is the best and the concentration of precipitant does not affect the diameter of compounded powder significantly. Meanwhile, most experiments lasting for fifty days in the greenhouse, and the results are 0.2 g·kg^(-1) nano La_2O_3 powder is enorgh for increasing biomass by 133% compared with that of the CK.展开更多
Rats were fed with foods containing various doses of terephthalic (TPA) for 8 weeks. General status was observed and biological indices(including urine,serum and bone) were determined after 1, 3 and 8 week administrat...Rats were fed with foods containing various doses of terephthalic (TPA) for 8 weeks. General status was observed and biological indices(including urine,serum and bone) were determined after 1, 3 and 8 week administration.Differences in urine calcium, ammonia, PH and serum albumin between the treat groups and the control were significant. Marked correlation was found in these indices. No Change in N-acetyl-β-D-glucosaminidase (NAG),serum calcium,bone calcium, alkaline phosphatase and alanine transaminase was noted in the treat groups.It suggests that change of urine ammonium concentration may serve as a protective level in setting the TPA exposure limit.展开更多
To explore the possibility to employ 99m Tc MIBI to monitor biological response of tumor cells after irradiation and to observe the relation between the radiation doses and the uptake levels of 99m Tc MI...To explore the possibility to employ 99m Tc MIBI to monitor biological response of tumor cells after irradiation and to observe the relation between the radiation doses and the uptake levels of 99m Tc MIBI in tumor cells, the cells were irradiated with a single dose of 2 Gy, 10 Gy and 20 Gy respectively. The uptake of 99m Tc MIBI in each dosage group was determined before and 24, 48, 72 h after irradiation respectively. Apoptosis index , plating efficiency of tumor cells was simultaneously determined. There was a positive correlation between uptake levels of 99m Tc MIBI and AI. A negative correlation was noted between the uptake levels and PE . It is suggested that 99m Tc MIBI may be used as a tracer to monitor the change of viability state of tumor cells after being irradiated with different doses.展开更多
Various biological indices were used to observe the effects of Tween-80 in combination with hyperthermia at different temperature (39-43℃) for different period of time (20-100 minutes) on human stomach cell line BGC-...Various biological indices were used to observe the effects of Tween-80 in combination with hyperthermia at different temperature (39-43℃) for different period of time (20-100 minutes) on human stomach cell line BGC-823. The results showed that Tween-80obviously reduced the activation energy of BGC-823 cells. Synergistic effect was observed if applied with heat at 39℃ with the increase in temperature and time,the inhibitory effect on the cancer cells was gradually intensified. The lethal rate of BGC-823 cells treated by heat at 41℃ in combination with Tween-80 was around 5.2 times as that treated by hyperthermia alone. The synergistic effect of heat at 41℃ for 100 min. in combination with Tween-80 was equivalent to the effect of 43℃ for 100 min.In other words, the critical temperature for BGC-823 cells was hereby reduced about 2℃. The measurement of membrane mobility, SDH activity etc.also showed that at 41℃ the synergistic effect of hyperthermia in combination with Tween-80 was the best, it exceeding the single effect of these factors in combination and showing effect of multiplication. The synergistic effect of heat at 41℃ in combination with Tween-80 was higher than that of heat at 41℃ in combination with MMC. It also demonstrated that the specific and sustained action on the inhibition of cancer cells did exist. These studies suggested that the synergistic mechanism of Tween-80 and hyperthermia probably was that both of them acted on the cell membrane system. Supported by The National Natural Science Fund of China (No. 3860948)展开更多
The biologically-effective-dose of tolpyralate, a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)-inhibitor, applied alone or tank-mixed with atrazine, for the control of multiple-herbicide-resistant (MHR) waterhemp [...The biologically-effective-dose of tolpyralate, a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)-inhibitor, applied alone or tank-mixed with atrazine, for the control of multiple-herbicide-resistant (MHR) waterhemp [<em>Amaranthus tuberculatus</em> (Moq.) J. D. Sauer] has not been studied in corn. Seven field experiments were conducted during a three-year period (2018, 2019, 2020) in Ontario, Canada with MHR waterhemp to determine: 1) the dose-response of MHR waterhemp to tolpyralate and tolpyralate plus atrazine, and 2) the relative efficacy of tolpyralate and tolpyralate plus atrazine to post-emergence corn herbicides, dicamba/atrazine (500/1000 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) and mesotrione + atrazine (100 + 280 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>). Tolpyralate + atrazine (120 + 4000 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) caused 13% corn injury at one site two weeks after application (WAA), which was observed as transient foliar chlorosis and bleaching of new leaves. At 12 WAA, the predicted dose of tolpyralate for 50% control of MHR waterhemp at Cottam and on Walpole Island was 8 and 2 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively;the predicted dose of tolpyralate + atrazine for 50% control of MHR waterhemp at Cottam and on Walpole Island was 5 + 160 and 1 + 21 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively. The difference in predicted dose at the two sites is likely due to differences in MHR density and resistance profile. Applied at the registered rate, tolpyralate (30 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) and tolpyralate + atrazine (30 + 1000 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) controlled MHR waterhemp similar to dicamba/atrazine and mesotrione + atrazine across sites. This study demonstrates that tolpyralate + atrazine, applied POST, provides season-long control of MHR waterhemp in corn.展开更多
Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been ...Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been systematically studied independently of the thermal effect. The purpose of this study was to investigate the non-thermal biological effect of graphene far-infrared ray (gFIR) on Saccharomyces cerevisiae cells. In this work, stringent control of the cultivation conditions was carried out to ensure the stability and constancy of the culture and its temperature. Flow cytometry was used to detect the non-thermal effect of gFIR irradiation on cell membrane permeability, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) content. Compared with the control group, cell membrane permeability of the gFIR exposure cells decreased by 4.7%, MMP increased by 16% and intracellular ROS reduced by 10.7%. The results revealed the valuable features of the non-thermal biological effect of gFIR on Saccharomyces cerevisiae cells, and the further analysis demonstrated that graphene far-infrared materials should have great application value in disease prevention and health promotion.展开更多
文摘The early RBE of the bone marrow in mice after studied irradiation with fast neutrons(35 MeVp→Be) was studied.60Co-γ ray was used for referent beams.Using the dos.making 50% loss of the nucleated cells of bone marrow in mice relative to control group mice to calculated the RBE value which was 2.13±0.18.Meanwhile,the relationship of the RBE values and the dose of neutrons was noted.On log-log plot the RBE values decrease with increasing dose of fast neutrons and it is consistent with a slope of -0.39± 0.10.The α/β ratios were estimated from linear-quadratic model of cell survival,they are 14.4±1.30 Gy for fast neutrons and 0.83±0.10 Gy for γ-ray,respectively.
基金the"Xi Bu Zhi Guang"Project of Chinese Academy of Sciences(No.O606180XBO)
文摘The relative biological effectiveness (RBE) of carbon ions with linear energy transfer (LET) of 172 keV/μm and 13.7 keV/μm were determined in this study. The clonogenic survival and premature terminal differentiation were measured on normal human fibroblasts AG01522C and NHDF after exposure of the cells to 250 kV X-rays and carbon ions with different qualities. RBE was determined for these two biological end points. The results showed that the measured RBE10 with a survival fraction of 10% was 3.2 for LET 172 keV/μm, and 1.33 for LET 13.7 keV/μm carbon ions. RBE for a doubling of post-mitotic fibroblasts (PMF) in the population was 2.8 for LET 172 keV/μm, and 1 for LET 13.7 keV/μm carbon ions. For the carbon ion therapy, a high RBE value on the Bragg peak results in a high biological dose on the tumour. The tumour cells can be killed effectively. At the same time, the dose on healthy tissue would be reduced accordingly. This will lighten the late effect such as fibrosis on normal tissue.
基金Supported by National Natural Science Foundation of China (31101124)National Modern Rapeseed Industry Technology SystemCentral Public-interest Scientific Institution Basal Research Fund (1610172009003)~~
文摘[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the test. Growth, photosynthesis and chlorophyll fluorescence parameters at flowering stage such as plant height, stem diameter, shoot and root dry matter, net photosynthesis, light energy conversion effi- ciency (Fv/Fm) and SPAD value, were investigated. The effects of fertilizer treat-ments on the yield of rapeseed were evaluated as well. [Result] Both multi-functional fertilizer and controlled release fertilizer could improve plant height, stem diameter, shoot dry matter, SPAD value, net photosynthesis, non-photochemical quenching (NPQ), etc., which helped increase yield and stress resistance. [Conclusion] Both multi-functional fertilizer and controlled release fertilizer could improve yield significantly while multi-functional fertilizer (MFF) was better than controlled release fertilizer (CRF).
基金supported by grants from the National Key R&D Program of China,No.2017YFC0909200(to DC)the National Natural Science Foundation of China,No.62075225(to HZ)+1 种基金Zhejiang Provincial Medical Health Science and Technology Project,No.2023XY053(to ZP)Zhejiang Provincial Traditional Chinese Medical Science and Technology Project,No.2023ZL703(to ZP).
文摘Terahertz biotechnology has been increasingly applied in various biomedical fields and has especially shown great potential for application in brain sciences.In this article,we review the development of terahertz biotechnology and its applications in the field of neuropsychiatry.Available evidence indicates promising prospects for the use of terahertz spectroscopy and terahertz imaging techniques in the diagnosis of amyloid disease,cerebrovascular disease,glioma,psychiatric disease,traumatic brain injury,and myelin deficit.In vitro and animal experiments have also demonstrated the potential therapeutic value of terahertz technology in some neuropsychiatric diseases.Although the precise underlying mechanism of the interactions between terahertz electromagnetic waves and the biosystem is not yet fully understood,the research progress in this field shows great potential for biomedical noninvasive diagnostic and therapeutic applications.However,the biosafety of terahertz radiation requires further exploration regarding its two-sided efficacy in practical applications.This review demonstrates that terahertz biotechnology has the potential to be a promising method in the field of neuropsychiatry based on its unique advantages.
文摘With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.
基金supported by the National Natural Science Foundation of China(61801506)。
文摘Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
基金supported by grants from the National Basic Research Program of China(No.2011CB503804)the National Natural Science Foundation of China(No.81372967)
文摘Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different sizes on cardiovascular cells have not been well recognized. In this study, sub-cultured human umbilical vein endothelial cells (HUVECs) were exposed to increasing concentrations of pure quartz particles (DQ) of three sizes (DQPM1, 〈1 μm; DQPM3-5, 3-5 μm; DQPM5, 5 μm) and carbon black particles of two sizes (CB0.1, 〈0.1 μm; CB 1, 〈 1 μm) for 24 h. Cytotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) and cell viability. Nitric oxide (NO) generation and cyto- kines (TNF-α and IL-1β) releases were analyzed by using NO assay and enzyme-linked immunoabsorbent assay (ELISA), respectively. It was found that both particles induced adverse biological effects on HUVECs in a dose-dependent manner. The size of particle directly influenced the biological activity. For quartz, the smaller particles induced stronger cytotoxicity and higher levels of cytokine responses than those particles of big size. For carbon black particles, CB0.1 was more capable of inducing adverse responses on HUVECs than CB 1 only at lower particle concentrations, in contrast to those at higher concentrations. Meanwhile, our data also revealed that quartz particles performed stronger cell damage and produced higher levels of TNF-α than carbon black particles, even if particles size was similar. In conclusion, particle size as well as particle composition should be both considered in assessing vascular endothelial cells injury and inflammation responses induced by particles.
基金Funded by the Major Sqpecial Technological Programmes Concerning Water Pollution Control and Management(No. 2008ZX07317-02)
文摘Tourmaline can promote the growth of microorganisms under the temperature less than 900 ℃ by experiment. However, this promotion effect will vanish at 900 ℃ as a result of denaturation. Through the XRD analysis the crystal form change can explain the vanishment of tourmaline’s biological promotion effect at high temperature. Therefore, tourmaline as a biological promoter was used to prepare a kind of biological promotive ceramsite with the surface area of 7.914 m2/g, pore volume of 0.1002 mg/L, superficial pH value of 7.8, Zeta potential of 25 mV, unit water absorption of 0.1365 g/g, biocompatibility of 0.023 A/g and SICE of 0.8456. The experimental results show that the biomass of biological promotive ceramsite is 3.58 times more than that of ordinary ceramsite, and the treatment effect of the biological promotive ceramsite is better than the ordinary ceramsite. These features of this new biological promotive ceramsite makes it a preferable biovector.
基金Supported by Natural Science Foundation of Sichuan Education Department(2008ZA033)
文摘[ Objective] This study aimed to investigate the biological effects of laser-induced mutation on fibrous roots of yellow skin onion. [ Method] Wet seeds of two yellow skin onion cultivars were irradiated by CO2 laser and He-Ne laser at three dosage levels separately. A randomized complete block design with three replications was adopted. The biological effects of laser-induced mutation on fibrous roots of Ll-generation yellow skin onion were investigated with biostatistics and physiological and biochemical methods. [Result] Significant variations in the biological effects caused by various laser treatments were observed in the length, quantity, fresh weight and activity of onion fibrous roots. Specifically, the variation in fibrous root length induced by different types of laser reached 5% significance level; significant variation was observed in fibrous roots of different onion cultivars induced by laser, while the variation among each treatment did not reach 5% sig- nifieance level ; the variation in fibrous root quantity induced by different dosage levels of laser reached 5% significance level ; laser radiation showed stimulating effect on root activity of onion. [ Conclusion] This study provided reference for laser-induced breeding of yellow skin onion.
基金the Young Scientific and Technical Innovation Foundation of Fujian Province (No. 2004J067)Foundation of Fuzhou General Hospital (No. 200638)
文摘Objective: To explore the possible biological function of human nuclear receptor hLRH-1 in tumorigenesis and progress of colon cancer. Methods: Plasmids pcDNA3-hLRH-1 were introduced into SW480 cells via lipofectamine. The expression of mRNA and protein of exogenous hLRH-1 were detected by RT-PCR and western blotting, respectively. MTT assay was carried out to survey the proliferation of SW480 cells with overexpression of hLRH-1. Meanwhile, the expression of proliferation-related genes cyclin E1 and cyclin D1, and apoptosis-related genes PTEN and Rbl, were analyzed by realtime RT-PCR. Results: The proliferation of SW480 cells was promoted under the condition of overexpression of hLRH-1. The expression of cyclin E1 was up-regulated significantly, while that of PTEN and Rbl were down-regulated in SW480 cells with overexpressed hLRH-1. Conclusion: The expression of exogenous hLRH-1 in SW480 cells induced the proliferation resulting form up-regulation of cyclin E1, as well as participated in the regulation of apoptosis via influencing the expression of PTEN and Rb1.
基金Supported by the Fund from Key Laboratory of Beam Technology and Material Modification of Ministry of Education(201123)
文摘[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.
文摘Based on the biological action spectra and total UV-B radiation in the atmosphere,the effective UV-dose for DNA, erythema,and plant at different seasons in the last decade,and their future change in Beijing area were calculated.Computation results indicate that the maxi- mum of biologically effective radiation dose at noontime is in July and the minimum is in January. From 1980 to 1989 biologically effective radiation dose have increased with the average rates of about 0.6,0.7 and 1.1 mW/m ̄2 per year for January, April and October,while in July the trend of radiation dose is not ln evidence. For 1% reduction of ozone concentration radiation amplification factor for DNA,erythema and plant are 2.3,2.3 and 1.4 and for 30% reduction of ozone concentration the RAF for DNA,erythema and plant are 4.2,4.0 and 2.1,respectively.
基金supported by the National Natural Science Foundation of China(No.81273034)Program for Liaoning Innovative Research Team in University(Grant number LT2015028)
文摘Objective To show the distribution of facial exposure to non-melanoma biologically effective UV irradiance changes by rotation angles. Methods This study selected the cheek, nose, and forehead as representative facial sites for UV irradiance measurements, which were performed using a rotating manikin and a spectroradiometer. The measured UV irradiance was weighted using action spectra to calculate the biologically effective UV irradiances that cause non-melanoma (UVBEnon.rnel) skin cancer. The biologically effective UV radiant exposure (HBEnon-mel) was calculated by summing the UVBEnon-mel data collected over the exposure period. Results This study revealed the following: (1) the maximum cheek, nose and forehead exposure UVA and UVB irradiance times and solar elevation angles (SEA) differed from those of the ambient UV irradiance and were influenced by the rotation angles; (2) the UV irradiance exposure increased in the following order: cheek 〈 nose 〈 forehead; (3) the distribution of UVBEnon-mel irradiance differed from that of unweighted UV radiation (UVR) and was influenced by the rotation angles and exposure times; and (4) the maximum percentage decreases in the UVBEnon-melradiant exposure for the cheek, nose and forehead from 0° to 180° were 48.41%, 69.48% and 71.71%, respectively. Conclusion Rotation angles relative to the sun influence the face's exposure to non-melanoma biologically effective UV.
文摘Using alkalescent ammonium(AAC)as precipitatnt, the diameter of nano La_2O_3 powder with diameter in 80 nm and less was prepared by the method of homogeneous precipitation, and reactant concentration, temperature and pH were studied and confirmed. The best precipitated concentration is from 0.2 to 0.5 mol·L^(-1), and the diameter of compounded powder turns small as the temperature gradually becomes high, and the pH from 6 to 8 is the best and the concentration of precipitant does not affect the diameter of compounded powder significantly. Meanwhile, most experiments lasting for fifty days in the greenhouse, and the results are 0.2 g·kg^(-1) nano La_2O_3 powder is enorgh for increasing biomass by 133% compared with that of the CK.
文摘Rats were fed with foods containing various doses of terephthalic (TPA) for 8 weeks. General status was observed and biological indices(including urine,serum and bone) were determined after 1, 3 and 8 week administration.Differences in urine calcium, ammonia, PH and serum albumin between the treat groups and the control were significant. Marked correlation was found in these indices. No Change in N-acetyl-β-D-glucosaminidase (NAG),serum calcium,bone calcium, alkaline phosphatase and alanine transaminase was noted in the treat groups.It suggests that change of urine ammonium concentration may serve as a protective level in setting the TPA exposure limit.
文摘To explore the possibility to employ 99m Tc MIBI to monitor biological response of tumor cells after irradiation and to observe the relation between the radiation doses and the uptake levels of 99m Tc MIBI in tumor cells, the cells were irradiated with a single dose of 2 Gy, 10 Gy and 20 Gy respectively. The uptake of 99m Tc MIBI in each dosage group was determined before and 24, 48, 72 h after irradiation respectively. Apoptosis index , plating efficiency of tumor cells was simultaneously determined. There was a positive correlation between uptake levels of 99m Tc MIBI and AI. A negative correlation was noted between the uptake levels and PE . It is suggested that 99m Tc MIBI may be used as a tracer to monitor the change of viability state of tumor cells after being irradiated with different doses.
文摘Various biological indices were used to observe the effects of Tween-80 in combination with hyperthermia at different temperature (39-43℃) for different period of time (20-100 minutes) on human stomach cell line BGC-823. The results showed that Tween-80obviously reduced the activation energy of BGC-823 cells. Synergistic effect was observed if applied with heat at 39℃ with the increase in temperature and time,the inhibitory effect on the cancer cells was gradually intensified. The lethal rate of BGC-823 cells treated by heat at 41℃ in combination with Tween-80 was around 5.2 times as that treated by hyperthermia alone. The synergistic effect of heat at 41℃ for 100 min. in combination with Tween-80 was equivalent to the effect of 43℃ for 100 min.In other words, the critical temperature for BGC-823 cells was hereby reduced about 2℃. The measurement of membrane mobility, SDH activity etc.also showed that at 41℃ the synergistic effect of hyperthermia in combination with Tween-80 was the best, it exceeding the single effect of these factors in combination and showing effect of multiplication. The synergistic effect of heat at 41℃ in combination with Tween-80 was higher than that of heat at 41℃ in combination with MMC. It also demonstrated that the specific and sustained action on the inhibition of cancer cells did exist. These studies suggested that the synergistic mechanism of Tween-80 and hyperthermia probably was that both of them acted on the cell membrane system. Supported by The National Natural Science Fund of China (No. 3860948)
文摘The biologically-effective-dose of tolpyralate, a new 4-hydroxyphenyl-pyruvate dioxygenase (HPPD)-inhibitor, applied alone or tank-mixed with atrazine, for the control of multiple-herbicide-resistant (MHR) waterhemp [<em>Amaranthus tuberculatus</em> (Moq.) J. D. Sauer] has not been studied in corn. Seven field experiments were conducted during a three-year period (2018, 2019, 2020) in Ontario, Canada with MHR waterhemp to determine: 1) the dose-response of MHR waterhemp to tolpyralate and tolpyralate plus atrazine, and 2) the relative efficacy of tolpyralate and tolpyralate plus atrazine to post-emergence corn herbicides, dicamba/atrazine (500/1000 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) and mesotrione + atrazine (100 + 280 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>). Tolpyralate + atrazine (120 + 4000 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) caused 13% corn injury at one site two weeks after application (WAA), which was observed as transient foliar chlorosis and bleaching of new leaves. At 12 WAA, the predicted dose of tolpyralate for 50% control of MHR waterhemp at Cottam and on Walpole Island was 8 and 2 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively;the predicted dose of tolpyralate + atrazine for 50% control of MHR waterhemp at Cottam and on Walpole Island was 5 + 160 and 1 + 21 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>, respectively. The difference in predicted dose at the two sites is likely due to differences in MHR density and resistance profile. Applied at the registered rate, tolpyralate (30 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) and tolpyralate + atrazine (30 + 1000 g<span style="white-space:nowrap;">·</span>ha<sup><span style="white-space:nowrap;">−</span>1</sup>) controlled MHR waterhemp similar to dicamba/atrazine and mesotrione + atrazine across sites. This study demonstrates that tolpyralate + atrazine, applied POST, provides season-long control of MHR waterhemp in corn.
文摘Graphene materials can emit far-infrared ray, but the biological effects of graphene far-infrared ray have not been studied. Furthermore, the non-thermal biological effect of far-infrared ray on organism has not been systematically studied independently of the thermal effect. The purpose of this study was to investigate the non-thermal biological effect of graphene far-infrared ray (gFIR) on Saccharomyces cerevisiae cells. In this work, stringent control of the cultivation conditions was carried out to ensure the stability and constancy of the culture and its temperature. Flow cytometry was used to detect the non-thermal effect of gFIR irradiation on cell membrane permeability, mitochondrial membrane potential (MMP) and intracellular reactive oxygen species (ROS) content. Compared with the control group, cell membrane permeability of the gFIR exposure cells decreased by 4.7%, MMP increased by 16% and intracellular ROS reduced by 10.7%. The results revealed the valuable features of the non-thermal biological effect of gFIR on Saccharomyces cerevisiae cells, and the further analysis demonstrated that graphene far-infrared materials should have great application value in disease prevention and health promotion.