To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium niobate (LNK) ceramic of which the rat...To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium niobate (LNK) ceramic of which the ratio of HA/LNK was 1 : 10 and 5 : 5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7, 14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF, the thickest apatite crystal on the negatively charged surfaces increased to 3. 337 μn. The hotel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.展开更多
Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid p...Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.展开更多
文摘To simulate the piezoelectric effect of nature bone, two kinds of biological piezoelectric composite ceramics consisted of hydroxyapatite ( HA ) and lithium sodium potassium niobate (LNK) ceramic of which the ratio of HA/LNK was 1 : 10 and 5 : 5( wt/ wt ) were prepared. Their piezoelectric property and growth of apatite crystal in the ceramics surface were investigated. With the increase of LNK amount, piezoelectric activity increased correspondingly. By immersing the poled piezoelectric ceramics in simulated body fluid (SBF) at 36.5 ℃ for 7, 14, and 21 days, apatite crystal was formed on negatively charged surfaces. After 21 days immersion in SBF, the thickest apatite crystal on the negatively charged surfaces increased to 3. 337 μn. The hotel biological piezoelectric ceramics show an excellent piezoelectric property and superior potential bioactivity.
基金supported by the National Grand Water Project(No.2008ZX07423-002)the National Natural Science Foundation of China(No.50978170)the Guangdong Provincial Funding(No.2012B030800001)
文摘Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively.