期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Removal of kathon by UV-C activated hydrogen peroxide:Kinetics,mechanisms,and enhanced biodegradability assessment
1
作者 Jinzhi Cui Guiqiao Wang +6 位作者 Xing Rong Wensu Gao Yaxin Lu Yawen Luo Lichao Zhang Zhongfa Cheng Canzhu Gao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期178-187,共10页
Kathon(CMI-MI),a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one(CMI)and 2-methyl-4-isothiazolin-3-one(MI),was extensively used in industry as a nonoxidizing biocide or disinfectant.However,it would show adverse eff... Kathon(CMI-MI),a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one(CMI)and 2-methyl-4-isothiazolin-3-one(MI),was extensively used in industry as a nonoxidizing biocide or disinfectant.However,it would show adverse effects on aquatic life when it is discharged into surface water.In this study,the removal performance,parameter influence,degradation products and enhancement of subsequent biodegradation of CMI-MI in UV/H_(2)O_(2)system were systematically investigated.The degradation rate of CMI-MI could reach 90%under UV irradiation for 20 min when the dosage of H_(2)O_(2)was 0.3 mmol·L^(–1).The DOC(dissolved organic carbon)mineralization rate of CMI-MI could reach 35%under certain conditions([H_(2)O_(2)]=0.3 mmol·L^(–1),UV irradiation for 40 min).kobs was inversely proportional to the concentration of CMI-MI and proportional to the concentration of H_(2)O_(2).The degradation rate of CMIMI was almost unchanged in the pH range from 4 to 10.Except the presence of CO_(3)^(2-)inhibited the removal rate of CMI-MI,SO_(4)^(2-),Cl^(-),NO_(3)^(-),and NH_(4)^(+) did not interfere with the degradation of CMI-MI in the system.It was found that UV/H_(2)O_(2)system had lower energy consumption and more economic advantage compared with UV/PS system by comparing the EEO(electric energy per order)values under the same conditions.Two main organic products were identified,namely HCOOH and CH_(3)NH_(2).There’s also the formation of Cl^(-)and SO_(4)^(2-).After UV and UV/H_(2)O_(2)photolysis,the biochemical properties of CMI-MI solution were obviously improved,especially the UV/H_(2)O_(2)treatment effect was better,indicating that UV/H_(2)O_(2)technology is expected to combine with biotechnology to remove CMI-MI effectively and environmentally friendly from wastewater. 展开更多
关键词 Kathon UV/H_(2)O_(2) biological degradation Circulating cooling water
下载PDF
Effects of acid mine drainage on photochemical and biological degradation of dissolved organic matter in karst river water
2
作者 Linwei Li Xingxing Cao +4 位作者 Chujie Bu Pan Wu Biao Tian Yongheng Dai Yeye Ren 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期26-38,共13页
Dissolved organic matter(DOM)can be removed or transformed by photochemical and biological processes,producing the negative effect of transforming organic carbon into inorganic carbon,which plays a vital role in the k... Dissolved organic matter(DOM)can be removed or transformed by photochemical and biological processes,producing the negative effect of transforming organic carbon into inorganic carbon,which plays a vital role in the karst carbon cycle.However,acid mine drainage(AMD)will affect this process,so the degradation of DOM in karst river water(KRW)needs to be studied in this context.In this study,to reveal the evolution processes of DOM under photochemical and biological conditions in AMD-impacted KRW,AMD and KRW were mixed in different ratios under conditions of visible light irradiation(VL),biodegradation(BD),ultraviolet irradiation(UV)and ultraviolet irradiation+biodegradation(UV+BD).The average DOC concentrations in samples after mixing AMD and KRW in different proportions decreased significantly(by 23%)in UV+BD,which was 1.2–1.4 times higher than under the other conditions and would lead to a significant release of inorganic carbon.Further analysis of the fluorescence parameters via parallel factor analysis(PARAFAC)revealed that the DOM fluorescence components in AMD comprised mainly protein-like substances derived from autochthonous components,while the DOM fluorescence components in KRW were mainly humic-like substances with both autochthonous and allochthonous sources.Therefore,AMD could promote both the photochemical and biological degradation of DOM in karst receiving streams,resulting in the conversion of DOC to inorganic carbon.The results showed that the synergistic effects of UV+BD and AMD accelerated the degradation of DOM and the release of inorganic carbon in KRW,thus affecting the stability of the karst carbon cycle. 展开更多
关键词 Acid mine drainage Dissolved organic matter Karst river water Photochemical degradation biological degradation
原文传递
AFB1 Bio-Degradation by a New Strain - Stenotrophomonas. sp 被引量:3
3
作者 LIANG Zhi-hong LI Jun-xia +4 位作者 HE Yun-long GUAN Shu WANG Nin JI Cheng NIU Tian-gui 《Agricultural Sciences in China》 CAS CSCD 2008年第12期1433-1437,共5页
The paper was to find the bacteria to degrade aflatoxin B 1 (AFB 1) and realize the application of biological degradation on AFB 1. Using cumarin as the carbon source and energy on the first screening, then the ten ... The paper was to find the bacteria to degrade aflatoxin B 1 (AFB 1) and realize the application of biological degradation on AFB 1. Using cumarin as the carbon source and energy on the first screening, then the ten strains which were first screened out were taken to degrade AFB 1 100 pg kg^-1. Strain NMO-3 was screened out of ten strains, the degradation ratio of AFB 1 reached 85.7%, which was more prominent than the others (P 〈 0.01). With the analysis of colony morphology, physiological and biochemistry experiments, and 16S rDNA gene sequence, the strain NMO-3 was finally identified as Stenotrophomonas sp. Using cumarin as the carbon source and energy could screen out the AFB 1 degradation strains. Acute toxicity tests show that the viable number of NMO-3 lower than 3.12 × 10^10 cfu mL-1 is safety. The crude enzyme was obtained by 65% ammonium sulfate fractionation, and it could degrade AFB1. It is the first report for the strain's detoxi- AFB1. 展开更多
关键词 AFLATOXIN biological degradation identification Stenotrophomonas sp.
下载PDF
Microbial degradation and its influence on components of coalbed gases in Enhong syncline, China
4
作者 Lan Fengjuan Qin Yong +3 位作者 Li Ming Tang Yonghong Guo Chen Zhang Fei 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期295-301,共7页
Coalbed gases (CBG) in Enhong syncline are characterized by high concentration of C2+ (C2-5 ), with the highest content of ethane over 30%. However, the concentrations of C2+ are not evenly distributed in the syncline... Coalbed gases (CBG) in Enhong syncline are characterized by high concentration of C2+ (C2-5 ), with the highest content of ethane over 30%. However, the concentrations of C2+ are not evenly distributed in the syncline. Based on the analysis of δ13C1 , δ13C2 , δ13C3 , δ13CO2 , δDCH4 of CBG and their origin diagrams in the normal and abnormal areas, this research shows that gases in both areas are thermogenic gases and the reason for the uneven distribution of C2+ is that the microbial degradation action on gases is stronger in the normal area than in the abnormal area. The secondary biologic gases in the normal area are mainly characterized by that the carbon isotopes become obviously lighter in methane and become heavier in ethane, whereas the molecular and isotopic compositions of CO2 change little. These features indicate that the secondary biologic gases are mainly generated by the microbial degradation of C2+ , not generated by the reduction of CO2 . The degradation process is selective to make the residual ethane being enriched in 13C and the generated methane rich in 12C. 展开更多
关键词 Biologic gases C2+ Microbial degradation Stable isotopes Coalbed gases origin Enhong syncline
下载PDF
The image simulation arithmetic of the degradating process of porous biologic ceramic in life-form
5
《Chinese Journal of Biomedical Engineering(English Edition)》 2001年第3期152-154,共3页
关键词 life The image simulation arithmetic of the degradating process of porous biologic ceramic in life-form
下载PDF
Review on biological degradation of mycotoxins 被引量:25
6
作者 Cheng Ji Yu Fan Lihong Zhao 《Animal Nutrition》 SCIE 2016年第3期127-133,共7页
The worldwide contamination of feeds and foods with mycotoxins is a significant problem. Mycotoxins pose huge health threat to animals and humans. As well, mycotoxins bring enormous economic losses in food industry an... The worldwide contamination of feeds and foods with mycotoxins is a significant problem. Mycotoxins pose huge health threat to animals and humans. As well, mycotoxins bring enormous economic losses in food industry and animal husbandry annually. Thus, strategies to eliminate or inactivate mycotoxins in food and feed are urgently needed. Traditional physical and chemical methods have some limitations such as limited efficacy, safety issues, losses in the nutritional value and the palatability of feeds, as well as the expensive equipment required to implement these techniques. Biological degradation of mycotoxins has shown promise because it works under mild, environmentally friendly conditions. Aflatoxin(AF), zearalenone(ZEA) and deoxynivalenol(DON) are considered the most economically important mycotoxins in terms of their high prevalence and significant negative effects on animal performance.Therefore, this review will comprehensively describe the biological degradation of AF, ZEA and DON by microorganisms(including fungi and bacteria) and specific enzymes isolated from microbial systems that can convert mycotoxins with varied efficiency to non-or less toxic products. Finally, some strategies and advices on existing difficulties of biodegradation research are also briefly proposed in this paper. 展开更多
关键词 biological degradation Mycotoxins AFLATOXINS ZEARALENONE DEOXYNIVALENOL
原文传递
Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors 被引量:1
7
作者 Hongjing LI Mengli HAO +3 位作者 Jingxian LIU Chen CHEN Zhengqiu FAN Xiangrong WANG 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2012年第2期224-230,共7页
关键词 pH biological degradation alga-lysing bac-teria sequencing batch biofilm reactor (SBBR) 16S rRNA Bacillus sp
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部