In the suspended sludge system, when pH and temperature were suitable and carbon source was not limited, the denitrification and C-uptake rate followed a zero-order reaction. Mixed VFA C-source had higher denitrificat...In the suspended sludge system, when pH and temperature were suitable and carbon source was not limited, the denitrification and C-uptake rate followed a zero-order reaction. Mixed VFA C-source had higher denitrification rate than single VFA C-source consisting of them. When VFA were used as carbon source, consumed carbon quantity for denitrification was closed to 1. 07 mg VFA-C/mg NO-N. About 20% of the applied C/N was used for assimilative purposes. As rising up influent C/N by increasing the C load ,the sludge yield YN increased. The part of carbon consumption increased and the effluent oxidized nitrogen decreased. At pH 7. 5, 25℃ and sludge yield 0.72 mg VSS/mg NO-N, the calculated influent VFA-C /NO critical value was 1. 43 for complete denitrification.展开更多
The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence...The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.展开更多
A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has ...A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.展开更多
A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C...A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.展开更多
A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrific...A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation.展开更多
Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two o...Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.展开更多
Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions,among which biological nitrogen removal of wastewater is an important contributor to carbon emissions.Howe...Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions,among which biological nitrogen removal of wastewater is an important contributor to carbon emissions.However,traditional heterotrophic denitrification still has the problems of excessive residual sludge and the requirement of external carbon sources.Consequently,the development of innovative low-carbon nitrate removal technologies is necessary.This review outlines the key roles of sulfur autotrophic denitrification and hydrogen autotrophic denitrification in low-carbon wastewater treatment.The discovered nitrate/nitrite dependent anaerobic methane oxidation enables sustainable methane emission reduction and nitrogen removal by utilizing available methane in situ.Photosynthetic microorganisms exhibited a promising potential to achieve carbon-negative nitrate removal.Specifically,the algal-bacterial symbiosis system and photogranules offer effective and prospective low-carbon options for nitrogen removal.Then,the emerging nitrate removal technology of photoelectrotrophic denitrification and the underlying,photoelectron transfer mechanisms are discussed.Finally,we summarize and prospect these technologies,highlighting that solar-driven biological nitrogen removal technology is a promising area for future sustainable wastewater treatment.This review has important guiding significance for the design of low-carbon wastewater treatment systems.展开更多
The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs) (0^#-6^#) which had been run under stable anaerobic ammonium oxidation (Anammox). By mean...The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs) (0^#-6^#) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4^#-N, NO2^--N, NO3^--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2^# reactor in which COD/NH4^+ -N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4^+-N consumed : NO2^- -N consumed : NO3^- -N produced was 1:1.38:0.19 in 0^# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4^+-N was fed for the reactors, the ratio of NO2^- -N consumed: NH4^+-N consumed was in the range of 1.51-2.29 and the ratio of NO;-N produced: NH4^+ -N consumed in the range of 0 -0.05.展开更多
Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource ...Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource under anoxic or anaerobic environment. In this way, nitrate is converted into nitrogen. In addition, ThiobaciWus denitrificans can accumulate sulfur extracellularly. In this study, in a process of simultaneous desulfurization and denitrification, a strain of Thiobacillus denitriificans is employed as sulfur-producer in the treatment of wastewater containing sulfide and nitrate. The key factors affecting this process are investigated through batch tests. The experimental results indicate that the sulfide concentration and the ratio of sulfide to nitrate (S2-/NO3-) in the influent are the key factors, and their suitable values are suggested to be 5/3 and no more than 300mg·L-1, respectively, in order to achieve high conversion of sulfur.展开更多
Since the ammonia in the effluent of the tradi-tional water purification process could not meet the supply demand,the advanced treatment of a high concentration of NH4+-N micro-polluted source water by biological acti...Since the ammonia in the effluent of the tradi-tional water purification process could not meet the supply demand,the advanced treatment of a high concentration of NH4+-N micro-polluted source water by biological activated carbon filter(BACF)was tested.The filter was operated in the downflow manner and the results showed that the remov-ing rate of NH_(4)^(+)-N was related to the influent concentration of NH_(4)^(+)-N.Its removing rate could be higher than 95%when influent concentration was under 1.0 mg/L.It could also decrease with the increasing influent concentration when the NH_(4)^(+)-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen(DO)in the influent was under 10 mg/L,and the minimum removing rate could be 30%.The key factor of restricting nitrification in BACF was the influent DO.When the influent NH_(4)^(+)-N concentration was high,the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones.The nitrification and degradation of organic matters existed in the aerobic zone,while the denitrification occurred in the anoxic zone.Due to the limited carbon source,the denitrifica-tion could not be carried out properly,which led to the accu-mulation of the denitrification intermediates such as NO_(2)^(−).In addition to the denitrification bacteria,the nitrification and the heterotrophic bacteria existed in the anoxic zone.展开更多
Introduction:Nitrogen fixation by microorganisms within biological soil crust(“biocrust”)communities provides an important pathway for N inputs in cool desert environments where soil nutrients are low and symbiotic ...Introduction:Nitrogen fixation by microorganisms within biological soil crust(“biocrust”)communities provides an important pathway for N inputs in cool desert environments where soil nutrients are low and symbiotic N-fixing plants may be rare.Estimates of N fixation in biocrusts often greatly exceed that of N accretion rates leading to uncertainty regarding N loss pathways.Methods:In this study we examined nitrogen fixation and denitrification rates in biocrust communities that differed in N fixation potential(low N fixation=light cyanobacterial biocrust,high N fixation=dark cyanolichen crust)at four temperature levels(10,20,30,40°C)and four simulated rainfall levels(0.05,0.2,0.6,1 cm rain events)under controlled laboratory conditions.Results:Acetylene reduction rates(AR,an index of N fixation activity)were over six-fold higher in dark crusts relative to light crusts.Dark biocrusts also exhibited eight-fold higher denitrification rates.There was no consistent effect of temperature on denitrification rates,but there was an interactive effect of water addition and crust type.In light crusts,denitrification rates increased with increasing water addition,whereas the highest denitrification rates in dark crusts were observed at the lowest level of water addition.Conclusions:These results suggest that there are no clear and consistent environmental controls on short-term denitrification rates in these biologically crusted soils.Taken together,estimates of denitrification from light and dark biocrusts constituted 3 and 4%of N fixation rates,respectively suggesting that losses as denitrification are not significant relative to N inputs via fixation.This estimate is based on a previously published conversion ratio of ethylene produced to N fixed that is low(0.295),resulting in high estimates of N fixation.If future N fixation studies in biologically crusted soils show that these ratios are closer to the theoretical 3:1 ratio,denitrification may constitute a more significant loss pathway relative to N fixed.展开更多
文摘In the suspended sludge system, when pH and temperature were suitable and carbon source was not limited, the denitrification and C-uptake rate followed a zero-order reaction. Mixed VFA C-source had higher denitrification rate than single VFA C-source consisting of them. When VFA were used as carbon source, consumed carbon quantity for denitrification was closed to 1. 07 mg VFA-C/mg NO-N. About 20% of the applied C/N was used for assimilative purposes. As rising up influent C/N by increasing the C load ,the sludge yield YN increased. The part of carbon consumption increased and the effluent oxidized nitrogen decreased. At pH 7. 5, 25℃ and sludge yield 0.72 mg VSS/mg NO-N, the calculated influent VFA-C /NO critical value was 1. 43 for complete denitrification.
基金Project supported by the Key International Cooperative Program of NSFC(No. 50521140075)the Hi-Tech Research and Development Program(863)of China(No. 2004AA601020)the Attached Projects of"863"Project of Beijing Municipal Science and Technology(No.20005186040421).
文摘The simultaneous nitrification and denitrification in step-feeding biological nitrogen removal process were investigated under different influent substrate concentrations and aeration flow rates. Biological occurrence of simultaneous nitrification and denitrification was verified in the aspect of nitrogen mass balance and alkalinity. The experimental results also showed that there was a distinct linear relationship between simultaneous nitrification and denitrification and DO concentration under the conditions of low and high aeration flow rate. In each experimental run the floc sizes of activated sludge were also measured and the results showed that simultaneous nitrification and denitrification could occur with very small size of floc.
基金Funded by the National Key Technologies R & D Program of China During the 10th Five-Year Plan Periods of China (No.2001BA604A01-03).
文摘A new wastewater treatment facility—lateral flow biological aerated filter (LBAF) was developed aiming at solving energy consumption and operational problems in wastewater treatment facilities in small towns. It has the function of nitrification and removing organic substrate. In this study, we focused on the denitrification performance of LBAF and its possible mechanism under thorough aeration. We identified the existence of simultaneous nitrification and denitrification (SND) by analyzing nitrogenous compounds along the flow path of LBAF and supportive microbial microscopy, and studied the effects of air/water ratio and hydraulic loading on the performance of nitrogen removal and on SND in LBAF to find out the optimal operation condition. It is found that for saving operation cost, aeration can be reduced to some degree that allows desirable removal efficiency of pollutants, and the optimal air/water ratio is 10:1. Hydraulic loading less than 0.43 m h?1 hardly affects the nitrification and denitrification performance; whereas higher hydraulic loading is unfavorable to both nitrification and denitrification, far more unfavorable to denitrification than to nitrification.
基金Supported by the National Water Pollution Control and Management(2008ZX07316-002)the University of Macao Research Committee(RG067/09-10S/SHJ/FST)
文摘A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and NH4^+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1:1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A^2O-MBR process.
基金Sponsored by the National Natural Science Foundation of China(5052114007550478084)
文摘A two-stage upflow biological aerated filter was designed as an advanced treatment process to optimize the operating parameters and study the correlative factors influencing the efficiency of nitrification, denitrification and phosphorus removal. The experimental results showed that the final effluent of the two-stage upflow biofilter process operated in series could meet the stringent limits of the reclaimed water for the total nitrogen of 2 mg/L, and total phosphorus of 0.3 mg/L. The high treatment efficiency allowed the reactor operating at very high hydraulic loadings and reaching nearly complete nitrification and denitrifieation.
文摘Biochar is a massively produced by-product of biomass pyrolysis to obtain renewable energy and has not been fully used. Incomplete separation of sludge and effluent and insufficient denitrification of sewage are two of main factors that influence the efficiency of activated sludge process. In this work, we proposed a new utilization of biochar and investigated the effect of biochar addition on the performance of settleability and denitrification of activated sludge. Results show that the addition of biochar can improve the settleability of activated sludge by changing the physicochemical characteristics of sludge (e.g., flocculating ability, zeta-potential, hydrophobicity, and extracellular polymeric substances constituents). Moreover, the dissolved organic carbon released from biochar obtained at lower pyrolysis temperature can improve the nitrate removal efficiency to a certain extent.
基金This work was supported by the National Key Research and Development Program of China(No.2022YFC3203003)the National Natural Science Foundations of China(Nos.52270016 and 51721006).
文摘Wastewater treatment plants are the major energy consumers and significant sources of greenhouse gas emissions,among which biological nitrogen removal of wastewater is an important contributor to carbon emissions.However,traditional heterotrophic denitrification still has the problems of excessive residual sludge and the requirement of external carbon sources.Consequently,the development of innovative low-carbon nitrate removal technologies is necessary.This review outlines the key roles of sulfur autotrophic denitrification and hydrogen autotrophic denitrification in low-carbon wastewater treatment.The discovered nitrate/nitrite dependent anaerobic methane oxidation enables sustainable methane emission reduction and nitrogen removal by utilizing available methane in situ.Photosynthetic microorganisms exhibited a promising potential to achieve carbon-negative nitrate removal.Specifically,the algal-bacterial symbiosis system and photogranules offer effective and prospective low-carbon options for nitrogen removal.Then,the emerging nitrate removal technology of photoelectrotrophic denitrification and the underlying,photoelectron transfer mechanisms are discussed.Finally,we summarize and prospect these technologies,highlighting that solar-driven biological nitrogen removal technology is a promising area for future sustainable wastewater treatment.This review has important guiding significance for the design of low-carbon wastewater treatment systems.
文摘The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs) (0^#-6^#) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4^#-N, NO2^--N, NO3^--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2^# reactor in which COD/NH4^+ -N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4^+-N consumed : NO2^- -N consumed : NO3^- -N produced was 1:1.38:0.19 in 0^# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4^+-N was fed for the reactors, the ratio of NO2^- -N consumed: NH4^+-N consumed was in the range of 1.51-2.29 and the ratio of NO;-N produced: NH4^+ -N consumed in the range of 0 -0.05.
基金Supported by the National Natural Science Foundation of China (No. 50208006).
文摘Thiobacillus denitrificans, a kind of autotrophic facultative bacteria, can oxidize sulfide into elemental sulfur or sulfate when nitrate was adopted as its electron accepter and carbon dioxide as its carbon resource under anoxic or anaerobic environment. In this way, nitrate is converted into nitrogen. In addition, ThiobaciWus denitrificans can accumulate sulfur extracellularly. In this study, in a process of simultaneous desulfurization and denitrification, a strain of Thiobacillus denitriificans is employed as sulfur-producer in the treatment of wastewater containing sulfide and nitrate. The key factors affecting this process are investigated through batch tests. The experimental results indicate that the sulfide concentration and the ratio of sulfide to nitrate (S2-/NO3-) in the influent are the key factors, and their suitable values are suggested to be 5/3 and no more than 300mg·L-1, respectively, in order to achieve high conversion of sulfur.
文摘Since the ammonia in the effluent of the tradi-tional water purification process could not meet the supply demand,the advanced treatment of a high concentration of NH4+-N micro-polluted source water by biological activated carbon filter(BACF)was tested.The filter was operated in the downflow manner and the results showed that the remov-ing rate of NH_(4)^(+)-N was related to the influent concentration of NH_(4)^(+)-N.Its removing rate could be higher than 95%when influent concentration was under 1.0 mg/L.It could also decrease with the increasing influent concentration when the NH_(4)^(+)-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen(DO)in the influent was under 10 mg/L,and the minimum removing rate could be 30%.The key factor of restricting nitrification in BACF was the influent DO.When the influent NH_(4)^(+)-N concentration was high,the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones.The nitrification and degradation of organic matters existed in the aerobic zone,while the denitrification occurred in the anoxic zone.Due to the limited carbon source,the denitrifica-tion could not be carried out properly,which led to the accu-mulation of the denitrification intermediates such as NO_(2)^(−).In addition to the denitrification bacteria,the nitrification and the heterotrophic bacteria existed in the anoxic zone.
基金We would like to thank Heidi Guenther,Matt Ross,and Conor Morrison,who all helped conduct the laboratory experiment.In addition,we would like to thank Will Wieder and the Townsend Lab at the University of Colorado for assistance analyzing gas samples and Dr.William Adams for providing use of laboratory equipment.Finally,we would like to acknowledge the two anonymous reviewers and Dr.Bettina Weber for reviewing the manuscript.
文摘Introduction:Nitrogen fixation by microorganisms within biological soil crust(“biocrust”)communities provides an important pathway for N inputs in cool desert environments where soil nutrients are low and symbiotic N-fixing plants may be rare.Estimates of N fixation in biocrusts often greatly exceed that of N accretion rates leading to uncertainty regarding N loss pathways.Methods:In this study we examined nitrogen fixation and denitrification rates in biocrust communities that differed in N fixation potential(low N fixation=light cyanobacterial biocrust,high N fixation=dark cyanolichen crust)at four temperature levels(10,20,30,40°C)and four simulated rainfall levels(0.05,0.2,0.6,1 cm rain events)under controlled laboratory conditions.Results:Acetylene reduction rates(AR,an index of N fixation activity)were over six-fold higher in dark crusts relative to light crusts.Dark biocrusts also exhibited eight-fold higher denitrification rates.There was no consistent effect of temperature on denitrification rates,but there was an interactive effect of water addition and crust type.In light crusts,denitrification rates increased with increasing water addition,whereas the highest denitrification rates in dark crusts were observed at the lowest level of water addition.Conclusions:These results suggest that there are no clear and consistent environmental controls on short-term denitrification rates in these biologically crusted soils.Taken together,estimates of denitrification from light and dark biocrusts constituted 3 and 4%of N fixation rates,respectively suggesting that losses as denitrification are not significant relative to N inputs via fixation.This estimate is based on a previously published conversion ratio of ethylene produced to N fixed that is low(0.295),resulting in high estimates of N fixation.If future N fixation studies in biologically crusted soils show that these ratios are closer to the theoretical 3:1 ratio,denitrification may constitute a more significant loss pathway relative to N fixed.