Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrati...Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.展开更多
Extensive research has been performed on cell membrane camouflaged-based drug delivery systems in recent years.Herein,we provide an overview of the challenges in system preparation,functional design,continuous industr...Extensive research has been performed on cell membrane camouflaged-based drug delivery systems in recent years.Herein,we provide an overview of the challenges in system preparation,functional design,continuous industrial production of these systems,and solution strategies for these challenges.Further,we analyze and discuss the frontier medical applications of cell membrane-camouflaged drug delivery systems in anti-inflammatory,anti-pathogenic microorganisms,and biological detoxification.This review takes a challenge-oriented perspective and seeks innovative strategies,provides a literature review of research into cell membrane-camouflaged drug delivery systems,and promotes the development of personalized clinical treatments.展开更多
基金funded by the National Natural Science Foundation of China(32273074,31972746,31872538 and 31772809)the Basic Scientific Research Project of Liaoning Provincial Department of Education,China(LJKZ0632)。
文摘Deoxynivalenol(DON)is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.At low concentrations,it can cause metabolic disorders in animals and humans and,at high concentrations,it can lead to pathological changes in the body.The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.DON causes severe damage to the intestine,including compromised intestinal barrier,mucosal damage,weakened immune function,and alterations in gut microbiota composition.These effects exacerbate intestinal infections and inflammation in livestock and poultry,posing adverse effects on overall health.Furthermore,research into biological methods for DON detoxification is a crucial avenue for future studies.This includes the utilization of adsorption,enzymatic degradation,and other biological approaches to mitigate DON's impact,offering new strategies for prevention and treatment of DON-induced diseases.Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed,thereby mitigating its risks to both animals and human health.
基金supported by the National Natural Science Foundation of China (No.82073789)Innovative Research Group at Higher Educational Institutions in Chongqing (No.CXQT20006)。
文摘Extensive research has been performed on cell membrane camouflaged-based drug delivery systems in recent years.Herein,we provide an overview of the challenges in system preparation,functional design,continuous industrial production of these systems,and solution strategies for these challenges.Further,we analyze and discuss the frontier medical applications of cell membrane-camouflaged drug delivery systems in anti-inflammatory,anti-pathogenic microorganisms,and biological detoxification.This review takes a challenge-oriented perspective and seeks innovative strategies,provides a literature review of research into cell membrane-camouflaged drug delivery systems,and promotes the development of personalized clinical treatments.