With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide ap...With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.展开更多
Objective: To explore the possible biological function of human nuclear receptor hLRH-1 in tumorigenesis and progress of colon cancer. Methods: Plasmids pcDNA3-hLRH-1 were introduced into SW480 cells via lipofectami...Objective: To explore the possible biological function of human nuclear receptor hLRH-1 in tumorigenesis and progress of colon cancer. Methods: Plasmids pcDNA3-hLRH-1 were introduced into SW480 cells via lipofectamine. The expression of mRNA and protein of exogenous hLRH-1 were detected by RT-PCR and western blotting, respectively. MTT assay was carried out to survey the proliferation of SW480 cells with overexpression of hLRH-1. Meanwhile, the expression of proliferation-related genes cyclin E1 and cyclin D1, and apoptosis-related genes PTEN and Rbl, were analyzed by realtime RT-PCR. Results: The proliferation of SW480 cells was promoted under the condition of overexpression of hLRH-1. The expression of cyclin E1 was up-regulated significantly, while that of PTEN and Rbl were down-regulated in SW480 cells with overexpressed hLRH-1. Conclusion: The expression of exogenous hLRH-1 in SW480 cells induced the proliferation resulting form up-regulation of cyclin E1, as well as participated in the regulation of apoptosis via influencing the expression of PTEN and Rb1.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear...Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.展开更多
[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the...[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the test. Growth, photosynthesis and chlorophyll fluorescence parameters at flowering stage such as plant height, stem diameter, shoot and root dry matter, net photosynthesis, light energy conversion effi- ciency (Fv/Fm) and SPAD value, were investigated. The effects of fertilizer treat-ments on the yield of rapeseed were evaluated as well. [Result] Both multi-functional fertilizer and controlled release fertilizer could improve plant height, stem diameter, shoot dry matter, SPAD value, net photosynthesis, non-photochemical quenching (NPQ), etc., which helped increase yield and stress resistance. [Conclusion] Both multi-functional fertilizer and controlled release fertilizer could improve yield significantly while multi-functional fertilizer (MFF) was better than controlled release fertilizer (CRF).展开更多
Depression and obesity (BMI ≥ 30) have been recognized as major public health issues worldwide. Although they have traditionally been compartmentalized as separate physical and emotional health conditions, evidence h...Depression and obesity (BMI ≥ 30) have been recognized as major public health issues worldwide. Although they have traditionally been compartmentalized as separate physical and emotional health conditions, evidence has suggested interactions and common pathways between them, implying that they probably shared common underlying biological mechanisms. By a systematic review of the literature and knowledge mining, we explore a potential biological mechanism of obesity effects on depression. Bioactivators in the body of obesity including adiponectin, leptin and its receptors, ghrelin, endocannabinoids and orexin receptors may contribute to depression by the hypothalamic pituitary adrenal axis, psycho-neuro-immunological system, neurovegetative system and brain areas control of mood and emotion such as hippocampus, cortex and amygdala.展开更多
With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a ...With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a unique motion for soft landing.The landing model consists of two periods.Jerk is minimized in the first period and force is minimized in the second period.In comparison with other landing models,this model is specialized for soft landing motion protecting an objective part.Given all mechanisms have mass,such model is useful in practical application.For the purpose of realizing soft landing motion,this study proposes a new leg mechanism.The mechanism achieves quick variable transmission with cam and wire.Design process of the cam is explained with dynamics and computation.With the calculated cam shape,the leg mechanism can be driven by constant input voltage for simple control.Robustness against height change is also verified with landing simulation.With 50mm falling experiment,prototype leg mechanism performed soft landing without bounce motion and large sound.The acceleration profile of the body also agrees with the proposed soft landing model.展开更多
Along with the role transformation of biomaterials from bioinert substitute to regenerative inducer, the biological effect and mechanism of material-organism interaction become more important. Since most of animal tes...Along with the role transformation of biomaterials from bioinert substitute to regenerative inducer, the biological effect and mechanism of material-organism interaction become more important. Since most of animal tests and cellular experiments stay on the phenomenon description instead of mechanism interpretation, the development of proteomics technologies provides a golden opportunity to uncover the molecular interaction mechanism between biomaterial-organism on whole scale. This review summarizes current application of proteomics in biological effect and mechanism study of biomaterials, and discusses the development and challenges for future studies.展开更多
Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral...Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.展开更多
Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different siz...Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different sizes on cardiovascular cells have not been well recognized. In this study, sub-cultured human umbilical vein endothelial cells (HUVECs) were exposed to increasing concentrations of pure quartz particles (DQ) of three sizes (DQPM1, 〈1 μm; DQPM3-5, 3-5 μm; DQPM5, 5 μm) and carbon black particles of two sizes (CB0.1, 〈0.1 μm; CB 1, 〈 1 μm) for 24 h. Cytotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) and cell viability. Nitric oxide (NO) generation and cyto- kines (TNF-α and IL-1β) releases were analyzed by using NO assay and enzyme-linked immunoabsorbent assay (ELISA), respectively. It was found that both particles induced adverse biological effects on HUVECs in a dose-dependent manner. The size of particle directly influenced the biological activity. For quartz, the smaller particles induced stronger cytotoxicity and higher levels of cytokine responses than those particles of big size. For carbon black particles, CB0.1 was more capable of inducing adverse responses on HUVECs than CB 1 only at lower particle concentrations, in contrast to those at higher concentrations. Meanwhile, our data also revealed that quartz particles performed stronger cell damage and produced higher levels of TNF-α than carbon black particles, even if particles size was similar. In conclusion, particle size as well as particle composition should be both considered in assessing vascular endothelial cells injury and inflammation responses induced by particles.展开更多
To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,th...To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.展开更多
Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of vari...Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.展开更多
Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory ...Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.展开更多
Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and...Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.展开更多
[ Objective] This study aimed to investigate the biological effects of laser-induced mutation on fibrous roots of yellow skin onion. [ Method] Wet seeds of two yellow skin onion cultivars were irradiated by CO2 laser ...[ Objective] This study aimed to investigate the biological effects of laser-induced mutation on fibrous roots of yellow skin onion. [ Method] Wet seeds of two yellow skin onion cultivars were irradiated by CO2 laser and He-Ne laser at three dosage levels separately. A randomized complete block design with three replications was adopted. The biological effects of laser-induced mutation on fibrous roots of Ll-generation yellow skin onion were investigated with biostatistics and physiological and biochemical methods. [Result] Significant variations in the biological effects caused by various laser treatments were observed in the length, quantity, fresh weight and activity of onion fibrous roots. Specifically, the variation in fibrous root length induced by different types of laser reached 5% significance level; significant variation was observed in fibrous roots of different onion cultivars induced by laser, while the variation among each treatment did not reach 5% sig- nifieance level ; the variation in fibrous root quantity induced by different dosage levels of laser reached 5% significance level ; laser radiation showed stimulating effect on root activity of onion. [ Conclusion] This study provided reference for laser-induced breeding of yellow skin onion.展开更多
This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and punctu...This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-a levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophii infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.展开更多
[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36...[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.展开更多
The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few stu...The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.展开更多
The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition...The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition and output of fecal bile acid were observed. All four kinds of dietary fiber were given at a level of 5% of diet to young male rats of Wistar strain fed on a lipid-rich diet contalning 5 % lard, 1% cholesteral and 0. 25 % cholate. All the dietary fibers tested have similar effects on serum lipid composition. In all groups, these substances prevent ed increases in total cholesterol in fasting serum, but the level of triglyceride was tmchangd.The concentrations of totaI cholesterol and triglyceride in the liver were lower in the RKM group than in the control group and the other three groups. Hepatic histopathological exami nation also showed the most significant lipotropic effect in the RKM group. The daily output of fecal bile acids (CDCA+GDCA) was significantly increased in the four experimental groups than in the normal group and the control group. The increase of CDCA was more significant than GDCA, suggesting that the increase of fecal bile acids, especially CDCA, may be one of the mechanisms by which RKM and the other three dietary fibers exerts a hypocholesterolemic effect展开更多
In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under...In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.展开更多
文摘With the increasing knowledge of shortwave radiation,it is widely used in wireless communications,radar observations,industrial manufacturing,and medical treatments.Despite of the benefits from shortwave,these wide applications expose humans to the risk of shortwave electromagnetic radiation,which is alleged to cause potential damage to biological systems.This review focused on the exposure to shortwave electromagnetic radiation,considering in vitro,in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave.Additionally,some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.
基金the Young Scientific and Technical Innovation Foundation of Fujian Province (No. 2004J067)Foundation of Fuzhou General Hospital (No. 200638)
文摘Objective: To explore the possible biological function of human nuclear receptor hLRH-1 in tumorigenesis and progress of colon cancer. Methods: Plasmids pcDNA3-hLRH-1 were introduced into SW480 cells via lipofectamine. The expression of mRNA and protein of exogenous hLRH-1 were detected by RT-PCR and western blotting, respectively. MTT assay was carried out to survey the proliferation of SW480 cells with overexpression of hLRH-1. Meanwhile, the expression of proliferation-related genes cyclin E1 and cyclin D1, and apoptosis-related genes PTEN and Rbl, were analyzed by realtime RT-PCR. Results: The proliferation of SW480 cells was promoted under the condition of overexpression of hLRH-1. The expression of cyclin E1 was up-regulated significantly, while that of PTEN and Rbl were down-regulated in SW480 cells with overexpressed hLRH-1. Conclusion: The expression of exogenous hLRH-1 in SW480 cells induced the proliferation resulting form up-regulation of cyclin E1, as well as participated in the regulation of apoptosis via influencing the expression of PTEN and Rb1.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金the grant from National Key Research and Development Program of China(Grant No.2021YFE0110000)the grant from Tianjin Municipal Science and Technology Foundation(Grant No.22JCYBJC00160).
文摘Background:Green tea,mulberry leaf and corn silk are traditional herbs used in the prevention and treatment of diabetes in China for a long time,but their synergistic hypoglycemic effects and mechanisms remain unclear.Methods:The effective components of green tea,mulberry leaf and corn silk were extracted and enriched.Mixture design of experiments was used to study the influences of different combinations on the cell viability and glucose uptake level of L6 myoblasts,so as to determine the optimal synergistic hypoglycemic combination.The possible hypoglycemic mechanism of the optimal synergistic combination was explored by cytotoxicity assay,glucose uptake assay,and western blot.Results:Three polyphenol enrichment fractions of the herbs,30%ethanol elution fraction of green tea(GT),50%ethanol elution fraction of mulberry leaf(ML)and 60%ethanol elution fraction of corn silk(CS)were obtained.The antioxidant activities of GT-30%,ML-50%and CS-60%were superior to those of crude extracts,and showed strong potential inα-amylase andα-glucosidase inhibition activities.The optimal synergistic combination of crude extracts G7(crude extract of green tea:crude extract of mulberry leaf:crude extract of corn silk=1:5:3),polyphenol enrichment fractions R3(GT-30%:ML-50%:CS-60%=1:7:1)and monomers X2(epigallocatechin gallate:morusin:formononetin=3:1:2)were selected,respectively.G7,R3,and X2 showed promoting effects on the cell viability and glucose uptake of L6 myoblasts within the detected concentration range.In addition,G7,R3,and X2 could increase the expression levels of p-PI3K/PI3K and p-Akt/Akt in L6 myoblasts,and promote the translocation of Glut4,but G7 and R3 showed more significant effects.Conclusion:The synergistic hypoglycemic effects of green tea,mulberry leaf and corn silk had the characteristics of multiple-components and multiple-targets with p-PI3K/PI3K,p-Akt/Akt and the translocation of Glut4 signal pathways involved.The three traditional herbs might have the potential to be combined used for the prevention and treatment of diabetes based on the synergistic hypoglycemic effects.
基金Supported by National Natural Science Foundation of China (31101124)National Modern Rapeseed Industry Technology SystemCentral Public-interest Scientific Institution Basal Research Fund (1610172009003)~~
文摘[Objective] The aim was to investigate the effects of fertilizer type on di- rect-seeded rapeseed and to explore effective fertilizing. [Method] Four treatments including different types of fertilizers were set in the test. Growth, photosynthesis and chlorophyll fluorescence parameters at flowering stage such as plant height, stem diameter, shoot and root dry matter, net photosynthesis, light energy conversion effi- ciency (Fv/Fm) and SPAD value, were investigated. The effects of fertilizer treat-ments on the yield of rapeseed were evaluated as well. [Result] Both multi-functional fertilizer and controlled release fertilizer could improve plant height, stem diameter, shoot dry matter, SPAD value, net photosynthesis, non-photochemical quenching (NPQ), etc., which helped increase yield and stress resistance. [Conclusion] Both multi-functional fertilizer and controlled release fertilizer could improve yield significantly while multi-functional fertilizer (MFF) was better than controlled release fertilizer (CRF).
文摘Depression and obesity (BMI ≥ 30) have been recognized as major public health issues worldwide. Although they have traditionally been compartmentalized as separate physical and emotional health conditions, evidence has suggested interactions and common pathways between them, implying that they probably shared common underlying biological mechanisms. By a systematic review of the literature and knowledge mining, we explore a potential biological mechanism of obesity effects on depression. Bioactivators in the body of obesity including adiponectin, leptin and its receptors, ghrelin, endocannabinoids and orexin receptors may contribute to depression by the hypothalamic pituitary adrenal axis, psycho-neuro-immunological system, neurovegetative system and brain areas control of mood and emotion such as hippocampus, cortex and amygdala.
文摘With jumping mechanisms,soft landing motion is important to protect loads and the mechanisms.This study proposes a leg mechanism for soft landing based on biological motion.Human jumping motion with a load suggests a unique motion for soft landing.The landing model consists of two periods.Jerk is minimized in the first period and force is minimized in the second period.In comparison with other landing models,this model is specialized for soft landing motion protecting an objective part.Given all mechanisms have mass,such model is useful in practical application.For the purpose of realizing soft landing motion,this study proposes a new leg mechanism.The mechanism achieves quick variable transmission with cam and wire.Design process of the cam is explained with dynamics and computation.With the calculated cam shape,the leg mechanism can be driven by constant input voltage for simple control.Robustness against height change is also verified with landing simulation.With 50mm falling experiment,prototype leg mechanism performed soft landing without bounce motion and large sound.The acceleration profile of the body also agrees with the proposed soft landing model.
基金support of Natural Science Foundation of Guangdong Province, China (Nos. 2016A030310245 and 2016A030310244)China Postdoctoral Science Foundation (No. 2016M591017)Key Projects in the National Science &Technology Pillar program during the thirteenth Five-year Plan Period (No. 2016YFC1102800)
文摘Along with the role transformation of biomaterials from bioinert substitute to regenerative inducer, the biological effect and mechanism of material-organism interaction become more important. Since most of animal tests and cellular experiments stay on the phenomenon description instead of mechanism interpretation, the development of proteomics technologies provides a golden opportunity to uncover the molecular interaction mechanism between biomaterial-organism on whole scale. This review summarizes current application of proteomics in biological effect and mechanism study of biomaterials, and discusses the development and challenges for future studies.
基金supported by Nanjing Medical University Technology Development Fund of China(General Program),No.2013NJMU182
文摘Mecobalamin, a form of vitamin B12 containing a central metal element (cobalt), is one of the most important mediators of nervous system function. In the clinic, it is often used to accelerate recovery of peripheral nerves, but its molecular mechanism remains unclear. In the present study, we performed sciatic nerve crush injury in mice, followed by daily intraperitoneal administra-tion of mecobalamin (65 μg/kg or 130 μg/kg) or saline (negative control). Walking track analysis, histomorphological examination, and quantitative real-time PCR showed that mecobalamin signiifcantly improved functional recovery of the sciatic nerve, thickened the myelin sheath in myelinated nerve ifbers, and increased the cross-sectional area of target muscle cells. Further-more, mecobalamin upregulated mRNA expression of growth associated protein 43 in nerve tissue ipsilateral to the injury, and of neurotrophic factors (nerve growth factor, brain-derived nerve growth factor and ciliary neurotrophic factor) in the L4–6 dorsal root ganglia. Our ifndings indicate that the molecular mechanism underlying the therapeutic effect of mecobalamin after sciatic nerve injury involves the upregulation of multiple neurotrophic factor genes.
基金supported by grants from the National Basic Research Program of China(No.2011CB503804)the National Natural Science Foundation of China(No.81372967)
文摘Summary: The contribution of particles to cardiovascular mortality and morbidity has been enlightened by epidemiologic and experimental studies. However, adverse biological effects of the particles with different sizes on cardiovascular cells have not been well recognized. In this study, sub-cultured human umbilical vein endothelial cells (HUVECs) were exposed to increasing concentrations of pure quartz particles (DQ) of three sizes (DQPM1, 〈1 μm; DQPM3-5, 3-5 μm; DQPM5, 5 μm) and carbon black particles of two sizes (CB0.1, 〈0.1 μm; CB 1, 〈 1 μm) for 24 h. Cytotoxicity was estimated by measuring the activity of lactate dehydrogenase (LDH) and cell viability. Nitric oxide (NO) generation and cyto- kines (TNF-α and IL-1β) releases were analyzed by using NO assay and enzyme-linked immunoabsorbent assay (ELISA), respectively. It was found that both particles induced adverse biological effects on HUVECs in a dose-dependent manner. The size of particle directly influenced the biological activity. For quartz, the smaller particles induced stronger cytotoxicity and higher levels of cytokine responses than those particles of big size. For carbon black particles, CB0.1 was more capable of inducing adverse responses on HUVECs than CB 1 only at lower particle concentrations, in contrast to those at higher concentrations. Meanwhile, our data also revealed that quartz particles performed stronger cell damage and produced higher levels of TNF-α than carbon black particles, even if particles size was similar. In conclusion, particle size as well as particle composition should be both considered in assessing vascular endothelial cells injury and inflammation responses induced by particles.
基金Project(2019SDZY02)supported by the Major Scientific and Technological Innovation Project of Shandong Provincial Key Research Development Program,ChinaProject(51904165)supported by the National Natural Science Foundation of ChinaProject(ZR2019QEE026)supported by the Shandong Provincial Natural Science Foundation,China。
文摘To research the anchoring effect of large deformation bolt,tensile and drawing models are established.Then,the evolution laws of drawing force,bolt axial force and interfacial shear stress are analyzed.Additionally,the influence of structure element position on the anchoring effect of large deformation bolt is discussed.At last,the energy-absorbing support mechanism is discussed.Results show that during the drawing process of normal bolt,drawing force,bolt axial force and interfacial shear stress all gradually increase as increasing the drawing displacement,but when the large deformation bolt enters the structural deformation stage,these three values will keep stable;when the structure element of large deformation bolt approaches the drawing end,the fluctuation range of drawing force decreases,the distributions of bolt axial force and interfacial shear stress of anchorage section are steady and the increasing rate of interfacial shear stress decreases,which are advantageous for keeping the stress stability of the anchorage body.During the working process of large deformation bolt,the strain of bolt body is small,the working resistance is stable and the distributions of bolt axial force and interfacial shear stress are steady.When a rock burst event occurs,the bolt and bonding interface cannot easily break,which weakens the dynamic disaster degree.
基金supported by the National Natural Science Foundation of China(61801506)。
文摘Microwave radiation has been widely used in various fields,such as communication,industry,medical treatment,and military applications.Microwave radiation may cause injuries to both the structures and functions of various organs,such as the brain,heart,reproductive organs,and endocrine organs,which endanger human health.Therefore,it is both theoretically and clinically important to conduct studies on the biological effects induced by microwave radiation.The successful establishment of injury models is of great importance to the reliability and reproducibility of these studies.In this article,we review the microwave exposure conditions,subjects used to establish injury models,the methods used for the assessment of the injuries,and the indicators implemented to evaluate the success of injury model establishment in studies on biological effects induced by microwave radiation.
基金supported by the China Postdoctoral Science Foundation (no. 2020M670599)
文摘Inflammation is a common disease involved in the pathogenesis,complications,and sequelae of a large number of related diseases,and therefore considerable research has been directed toward developing anti-inflammatory drugs for the prevention and treatment of these diseases.Traditional Chinese medicine(TCM)has been used to treat inflammatory and related diseases since ancient times.According to the re-view of abundant modern scientific researches,it is suggested that TCM exhibit anti-inflammatory effects at different levels,and via multiple pathways with various targets,and recently a series of in vitro and in vivo anti-inflammatory models have been developed for anti-inflammation research in TCM.Currently,the reported classic mechanisms of TCM and experimental models of its anti-inflammatory effects pro-vide reference points and guidance for further research and development of TCM.Importantly,the research clearly confirms that TCM is now and will continue to be an effective form of treatment for many types of inflammation and inflammation-related diseases.
基金supported by the National Natural Science Foundation major international(regional)joint research project(81220108006)to WJYoung Scientists Fund of National Natural Science Foundation(81200292),Young Scientists Fund of National Natural Science Foundation(81200655)to LSShanghai Rising-Star Program(13QA1402900)and Hong Kong Scholars Program(XJ2013035)to HL
文摘Overweight or obesity has become a serious public health problem in the world, scientists are concentrating their efforts on exploring novel ways to treat obesity. Nowadays, the availabilities of bariatric surgery and pharmacotherapy have enhanced obesity treatment, but it should has support from diet, physical exercise and lifestyle modification, especially the functional food. Resistant starch, an indigestible starch, has been studied for years for its beneficial effects on regulating blood glucose level and lipid metabolism. The aim of this review is to summarize the effect of resistant starch on weight loss and the possible mechanisms. According to numerous previous studies it could be concluded that resistant starch can reduce fat accumulation, enhance insulin sensitivity, regulate blood glucose level and lipid metabolism. Recent investigations have focused on the possible associations between resistant starch and incretins as well as gut microbiota. Resistant starch seems to be a promising dietary fiber for the prevention or treatment of obesity and its related diseases.
基金Supported by Natural Science Foundation of Sichuan Education Department(2008ZA033)
文摘[ Objective] This study aimed to investigate the biological effects of laser-induced mutation on fibrous roots of yellow skin onion. [ Method] Wet seeds of two yellow skin onion cultivars were irradiated by CO2 laser and He-Ne laser at three dosage levels separately. A randomized complete block design with three replications was adopted. The biological effects of laser-induced mutation on fibrous roots of Ll-generation yellow skin onion were investigated with biostatistics and physiological and biochemical methods. [Result] Significant variations in the biological effects caused by various laser treatments were observed in the length, quantity, fresh weight and activity of onion fibrous roots. Specifically, the variation in fibrous root length induced by different types of laser reached 5% significance level; significant variation was observed in fibrous roots of different onion cultivars induced by laser, while the variation among each treatment did not reach 5% sig- nifieance level ; the variation in fibrous root quantity induced by different dosage levels of laser reached 5% significance level ; laser radiation showed stimulating effect on root activity of onion. [ Conclusion] This study provided reference for laser-induced breeding of yellow skin onion.
基金supported by the Major Invite Tender Project of Health Department of Jiangxi Province(No.20104005)the Major Project of the Department of Education of Jiangxi Province(No.GJJ12003)the 13th’Challenge Cup’of Extracurricular academic and scientific works of Nanchang University
文摘This study aims to observe the protective effects of ginsenoside Rbl on liver and lung in rats with septic shock and reveal its mechanism. Rats were randomly divided into three groups: sham, cecal ligation and puncture (CLP), and CLP with ginsenoside Rb1. Then, the survival rate, arterial blood pressure, TLR4 mRNA, and TNF-α levels were determined. The liver and lung tissues were stained with hematoxylin-eosin (HE). The overall survival rate of the Rb1 group was significantly higher than that of the CLP group. Mean arterial blood pressure went down in both the CLP and Rb1 groups after CLP, and there was a significant difference both in the sham and Rb1 groups when compared with the CLP group. The Rb1 treatment group had markedly lower TLR4 mRNA expression and TNF-a levels than the CLP group. In the CLP group, pathology showed swelling, degeneration, necrosis, and neutrophii infiltration in the liver and alveolar epithelial cells. However, in the Rb1 group, there was mild degeneration and slight neutrophil infiltration, but no obvious necrosis. Rb1 may improve the survival rate, ameliorate arterial blood pressure, and protect the liver and lung in septic shock rats by downregulating the expression of TLR4 mRNA and inhibiting the production of TNF-α.
基金Supported by the Fund from Key Laboratory of Beam Technology and Material Modification of Ministry of Education(201123)
文摘[ Objective ] This study aimed to investigate the effects of carbon ion implantation and implantation times on growth and genetic variation of sunflowers. [ Method] Carbon ions were implanted into Bakui 138, Bakui i36 and Bakui 118 seeds at dose of 5 - 10is C/cm2, before they were planted. Their Fl-generation seeds were irradiated again. Seeds of the both generations were planted and the growth d the seedlings was observed in field tests. Finally, their genetic variation was analyzed through RAPD. [ Result] The germination rate and several agronomic traits like plant height, stem diameter, leaf number and yields of Bakui 138 of once-irradiated group were significantly improved, while that of twice-irradiated group showed opposite trend. The variation of Bakui 136 and Bakui 118 was insig- nificant. At the molecular level, the genetic distance with the control group of once and twice-irradiated groups was 0. 111 1, 0. 108 7 in Bakui 138; 0. 068 O, O. 030 3 in Bakui 136 and 0.062 5,0.043 5 in Bakui 118. [Conclusion] Carbon ion implantation had a significant effect on the growth and development of Bakui 138, and the effect varied with irradiation times. Moreover, it caused genomic variation in the three sunflower cuhivars.
基金supported by the National Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020)the Academic Excellence Foundation of BUAA for PhD Students.
文摘The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.
文摘The effects of RKM in comparison with pectin, algin and agar on lipid levels in serum and liver and on liver histopathology in rats were studied. In addition, the effects of all the tested materials on the composition and output of fecal bile acid were observed. All four kinds of dietary fiber were given at a level of 5% of diet to young male rats of Wistar strain fed on a lipid-rich diet contalning 5 % lard, 1% cholesteral and 0. 25 % cholate. All the dietary fibers tested have similar effects on serum lipid composition. In all groups, these substances prevent ed increases in total cholesterol in fasting serum, but the level of triglyceride was tmchangd.The concentrations of totaI cholesterol and triglyceride in the liver were lower in the RKM group than in the control group and the other three groups. Hepatic histopathological exami nation also showed the most significant lipotropic effect in the RKM group. The daily output of fecal bile acids (CDCA+GDCA) was significantly increased in the four experimental groups than in the normal group and the control group. The increase of CDCA was more significant than GDCA, suggesting that the increase of fecal bile acids, especially CDCA, may be one of the mechanisms by which RKM and the other three dietary fibers exerts a hypocholesterolemic effect
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70571017 and 10547004 and the Key Projects of National Natural Science Foundation of China under Grant No. 70431002
文摘In this paper, we propose a new model of weighted small-world biological neural networks based on biophysical Hodgkin-Huxley neurons with side-restrain mechanism. Then we study excitement properties of the model under alternating current (AC) stimulation. The study shows that the excitement properties in the networks are preferably consistent with the behavior properties of a brain nervous system under different AC stimuli, such as refractory period and the brain neural excitement response induced by different intensities of noise and coupling. The results of the study have reference worthiness for the brain nerve electrophysiology and epistemological science.