The endocannabinoid system(ECS),particularly its signaling pathways and ligands,has garnered considerable interest in recent years.Along with clinical work investigating the ECS’functions,including its role in the de...The endocannabinoid system(ECS),particularly its signaling pathways and ligands,has garnered considerable interest in recent years.Along with clinical work investigating the ECS’functions,including its role in the development of neurological and inflammatory conditions,much research has focused on developing analytical protocols enabling the precise monitoring of the levels and metabolism of the most potent ECS ligands:exogenous phytocannabinoids(PCs)and endogenous cannabinoids(endocannabinoids,ECs).Solid-phase microextraction(SPME)is an advanced,non-exhaustive sample-preparation technique that facilitates the precise and efficient isolation of trace amounts of analytes,thus making it appealing for the analysis of PCs and ECs in complex matrices of plant and animal/human origin.In this paper,we review recent forensic medicine and toxicological studies wherein SPME has been applied to monitor levels of PCs and ECs in complex matrices,determine their effects on organism physiology,and assess their role in the development of several diseases.展开更多
Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared ...Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared with laser-based refractive surgery and are reversible. In this review, we provide a brief overview of the anatomic microstructure of the human cornea, indicating the primary physiological function for each component. Next, the wide range of biomaterials used as corneal inlays and onlays are considered, from synthetic polymers to biological components derived from the extracellular matrix. The limitations and challenges associated with the most common materials are discussed as is the need to improve their properties to achieve long-term, complication-free intraocular implantation. Finally, the prospect of applying tissue engineering strategies is noted for its potential to generate autologous corneal tissue that could be implanted as the optimal inlay or onlay materials.展开更多
文摘The endocannabinoid system(ECS),particularly its signaling pathways and ligands,has garnered considerable interest in recent years.Along with clinical work investigating the ECS’functions,including its role in the development of neurological and inflammatory conditions,much research has focused on developing analytical protocols enabling the precise monitoring of the levels and metabolism of the most potent ECS ligands:exogenous phytocannabinoids(PCs)and endogenous cannabinoids(endocannabinoids,ECs).Solid-phase microextraction(SPME)is an advanced,non-exhaustive sample-preparation technique that facilitates the precise and efficient isolation of trace amounts of analytes,thus making it appealing for the analysis of PCs and ECs in complex matrices of plant and animal/human origin.In this paper,we review recent forensic medicine and toxicological studies wherein SPME has been applied to monitor levels of PCs and ECs in complex matrices,determine their effects on organism physiology,and assess their role in the development of several diseases.
基金the financial support from NIH grants(EY016415)to J.L.FunderburghCore grant(P30-EY08098)+1 种基金Other support was received from the Ocular Tissue Engineering and Regenerative Ophthalmology(OTERO)program of the Louis J Fox Center for Vision Restorationthe McGowan Institute for Regenerative Medicine,Research to Prevent Blindness Inc
文摘Corneal inlays and onlays represent a means of providing patients with permanent refractive error correction. As an alternative to conventional spectacles and contact lens, these techniques are less invasive compared with laser-based refractive surgery and are reversible. In this review, we provide a brief overview of the anatomic microstructure of the human cornea, indicating the primary physiological function for each component. Next, the wide range of biomaterials used as corneal inlays and onlays are considered, from synthetic polymers to biological components derived from the extracellular matrix. The limitations and challenges associated with the most common materials are discussed as is the need to improve their properties to achieve long-term, complication-free intraocular implantation. Finally, the prospect of applying tissue engineering strategies is noted for its potential to generate autologous corneal tissue that could be implanted as the optimal inlay or onlay materials.