In this paper, the Adomian's decomposition method (ADM) is presented for finding the exact solutions of a more general biological population models. A new solution is constructed in power series. The fractional der...In this paper, the Adomian's decomposition method (ADM) is presented for finding the exact solutions of a more general biological population models. A new solution is constructed in power series. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method, some examples are provided.展开更多
In this paper,the homotopy analysis method (HAM) is applied to solve generalized biological populationmodels.The fractional derivatives are described by Caputo's sense.The method introduces a significant improveme...In this paper,the homotopy analysis method (HAM) is applied to solve generalized biological populationmodels.The fractional derivatives are described by Caputo's sense.The method introduces a significant improvementin this field over existing techniques.Results obtained using the scheme presented here agree well with the analyticalsolutions and the numerical results presented in Ref.[6].However,the fundamental solutions of these equations stillexhibit useful scaling properties that make them attractive for applications.展开更多
In this paper,we find the solutions for two-dimensional biological population model having fractional order using fractional natural decomposition method(FNDM).The proposed method is a graceful blend of decomposition ...In this paper,we find the solutions for two-dimensional biological population model having fractional order using fractional natural decomposition method(FNDM).The proposed method is a graceful blend of decomposition scheme with natural transform,and three examples are considered to validate and illustrate its efficiency.The nature of FNDM solution has been captured for distinct arbitrary order.In order to illustrate the proficiency and reliability of the considered scheme,the numerical simulation has been presented.The obtained results illuminate that the considered method is easy to apply and more effective to examine the nature of multi-dimensional differential equations of fractional order arisen in connected areas of science and technology.展开更多
In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this ...In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.展开更多
This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subseq...This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subsequent numerical results re-identify the effectiveness of proposed algorithm. It is pragmatic that recommended plan is greatly consistent and may be comprehensive to other nonlinear differential equations of fractional order.展开更多
The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéappro...The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéapproach method(PPAM).When the variables appearing in the exact solutions take specific values,the solitary wave solutions will be easily obtained.The realized results prove the efficiency of this technique.展开更多
In this paper, we discussed population model of two competing populations with non-linear double diffusion and variable density which described by nonlinear system of competing individuals. We identify new properties,...In this paper, we discussed population model of two competing populations with non-linear double diffusion and variable density which described by nonlinear system of competing individuals. We identify new properties, such as finite speed of propagation, and localization of the outbreaks in a specific area.展开更多
文摘In this paper, the Adomian's decomposition method (ADM) is presented for finding the exact solutions of a more general biological population models. A new solution is constructed in power series. The fractional derivatives are described in the Caputo sense. To illustrate the reliability of the method, some examples are provided.
文摘In this paper,the homotopy analysis method (HAM) is applied to solve generalized biological populationmodels.The fractional derivatives are described by Caputo's sense.The method introduces a significant improvementin this field over existing techniques.Results obtained using the scheme presented here agree well with the analyticalsolutions and the numerical results presented in Ref.[6].However,the fundamental solutions of these equations stillexhibit useful scaling properties that make them attractive for applications.
文摘In this paper,we find the solutions for two-dimensional biological population model having fractional order using fractional natural decomposition method(FNDM).The proposed method is a graceful blend of decomposition scheme with natural transform,and three examples are considered to validate and illustrate its efficiency.The nature of FNDM solution has been captured for distinct arbitrary order.In order to illustrate the proficiency and reliability of the considered scheme,the numerical simulation has been presented.The obtained results illuminate that the considered method is easy to apply and more effective to examine the nature of multi-dimensional differential equations of fractional order arisen in connected areas of science and technology.
文摘In this paper, we extensively studied a mathematical model of biology. It helps us to understand the dynamical procedure of population changes in biological population model and provides valuable predictions. In this model, we establish a variety of exact solutions. To study the exact solutions, we used a fractional complex transform to convert the particular partial differential equation of fractional order into corresponding partial differential equation and modified exp-function method is implemented to investigate the nonlinear equation. Graphical demonstrations along with the numerical data reinforce the efficacy of the used procedure. The specified idea is very effective, unfailing, well-organized and pragmatic for fractional PDEs and could be protracted to further physical happenings.
文摘This paper is the spectator of the arrangement of an efficient transformation and exfunction technique to build up generalized exact solutions of the biological population model equation. Computational work and subsequent numerical results re-identify the effectiveness of proposed algorithm. It is pragmatic that recommended plan is greatly consistent and may be comprehensive to other nonlinear differential equations of fractional order.
文摘The nonlinear dynamical exact wave solutions to the non-fractional order and the time-fractional order of the biological population models are achieved for the first time in the framwork of the Paul-Painlevéapproach method(PPAM).When the variables appearing in the exact solutions take specific values,the solitary wave solutions will be easily obtained.The realized results prove the efficiency of this technique.
文摘In this paper, we discussed population model of two competing populations with non-linear double diffusion and variable density which described by nonlinear system of competing individuals. We identify new properties, such as finite speed of propagation, and localization of the outbreaks in a specific area.