Objective:To explore the regulatory mechanism of NUDT5 in glioblastoma multiforme(GBM).Methods:GEPIA database was used to predict the expressions of NUDT5 and tripartite motif family proteins 47(TRIM47)in GBM patients...Objective:To explore the regulatory mechanism of NUDT5 in glioblastoma multiforme(GBM).Methods:GEPIA database was used to predict the expressions of NUDT5 and tripartite motif family proteins 47(TRIM47)in GBM patients.RT-qPCR and Western blot analyses were performed to examine NUDT5 expression in GBM cells.LN-229 cell proliferation,migration as well as invasion were estimated by CCK-8,colony formation,wound healing,and Transwell assays following interference with NUDT5.ECAR assay,L-lactic acid kit,glucose detection kit,and ATP detection kit were applied for the detection of glycolysis-related indexes.Co-immunoprecipitation experiment was carried out to verify the relationship between NUDT5 and TRIM47.Results:GEPIA database showed that NUDT5 expression was significantly increased in GBM patients.Inhibiting the expression of NUDT5 in GBM cells significantly suppressed the viability,proliferation,invasion,migration,and glycolysis of GBM cells.Moreover,TRIM47 was highly expressed in GBM cells and interacted with NUDT5.Overexpression of TRIM47 partially reversed the inhibitory effect of NUDT5 downregulation on the proliferation,metastasis,and glycolysis of GBM cells.Conclusions:NUDT5 promotes the growth,metastasis,and Warburg effect of GBM cells by upregulating TRIM47.Both NUDT5 and TRIM47 can be used as targets for GMB treatment.展开更多
EMulate Therapeutics has developed a system for emulating the effects of solvated molecules via their magnetic field recordings. Recordings of magnetic field emissions of select small inhibitor RNAs (siRNAs;murine tar...EMulate Therapeutics has developed a system for emulating the effects of solvated molecules via their magnetic field recordings. Recordings of magnetic field emissions of select small inhibitor RNAs (siRNAs;murine targeting CTLA-4 and murine targeting PD-1) were tested on C57Bl/6 mice implanted subcutaneously with the GL261 murine tumor cell line. A signal composed of concatenated recordings of siRNA molecules targeting the murine CTLA-4 and PD-1 receptors (labeled A2) was used in immune competent C57Bl/6 mice. The mice were flank implanted with the murine glioblastoma cell line GL261. Mice were exposed to the signal continuously (24 hours a day) until tumor volumes reached the designated volume limit. Tumors were excised and analyzed via PAGE/Western blot for the expression of CTLA-4, PD-1, Ki67, Caspase 3, CD4 and CD8. Terminal blood draws were used for CBCs. We report the down regulation of the checkpoint inhibitors CTLA-4 in the exposed mice. Significant tumor volume reduction was observed in mice exposed to the siRNA signal compared to control mice;no adverse events were recorded. Cell blood counts (CBC) and protein expression patterns were observed to correlate with the expected function of protein expression inhibition of the targets.展开更多
Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player le...Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression.Specifically,hypoxia is known to activate inducible factors,such as hypoxia-inducible factor 1alpha(HIF-1α),which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators,such as the vascular endothelial growth factor(VEGF).Here,we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data,as potential biomarkers of GBM prognosis and treatment efficacy.We performed a systematic review(Medline/Embase,and Pubmed database search was completed by 16th of April 2024 by two independent teams;PRISMA 2020).We evaluated methods of immunoassays,cell viability,or animal or patient survival methods of the retrieved studies to assess unbiased data.We used inclusion criteria,such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression,other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression,application of immunoassays for protein expression,and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression.We used exclusion criteria,such as data not reporting both HIF-1αand VEGF or prognosis.We included 50 studies investigating in total 1319 GBM human specimens,18 different cell lines or GBM-derived stem cells,and 6 different animal models,to identify the association of HIF-1α/VEGF immunophenotypes,and with other prognostic factors,clinical and macroscopic data in GBM prognosis and therapeutic approaches.We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors,such as miR-210-3p,Oct4,AKT,COX-2,PDGF-C,PLDO3,M2 polarization,or ALK,leading to unfavorable survival.Reduced HIF-1α/VEGF expression correlates with FIH-1,ADNP,or STAT1 upregulation,as well as with clinical manifestations,like epileptogenicity,and a favorable prognosis of GBM.Based on our data,HIF-1αor VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression.Finally,HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy,including combined first-line treatment with histone deacetylase inhibitors,thimerosal,or an active metabolite of irinotecan,as well as STAT3 inhibitors alone,and resulting in a favorable tumor prognosis and patient survival.These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes.Data limitations may include the use of less sensitive detection methods in some cases.Overall,our data support HIF-1α/VEGF’s role as biomarkers of GBM prognosis and treatment efficacy.展开更多
文摘Objective:To explore the regulatory mechanism of NUDT5 in glioblastoma multiforme(GBM).Methods:GEPIA database was used to predict the expressions of NUDT5 and tripartite motif family proteins 47(TRIM47)in GBM patients.RT-qPCR and Western blot analyses were performed to examine NUDT5 expression in GBM cells.LN-229 cell proliferation,migration as well as invasion were estimated by CCK-8,colony formation,wound healing,and Transwell assays following interference with NUDT5.ECAR assay,L-lactic acid kit,glucose detection kit,and ATP detection kit were applied for the detection of glycolysis-related indexes.Co-immunoprecipitation experiment was carried out to verify the relationship between NUDT5 and TRIM47.Results:GEPIA database showed that NUDT5 expression was significantly increased in GBM patients.Inhibiting the expression of NUDT5 in GBM cells significantly suppressed the viability,proliferation,invasion,migration,and glycolysis of GBM cells.Moreover,TRIM47 was highly expressed in GBM cells and interacted with NUDT5.Overexpression of TRIM47 partially reversed the inhibitory effect of NUDT5 downregulation on the proliferation,metastasis,and glycolysis of GBM cells.Conclusions:NUDT5 promotes the growth,metastasis,and Warburg effect of GBM cells by upregulating TRIM47.Both NUDT5 and TRIM47 can be used as targets for GMB treatment.
文摘EMulate Therapeutics has developed a system for emulating the effects of solvated molecules via their magnetic field recordings. Recordings of magnetic field emissions of select small inhibitor RNAs (siRNAs;murine targeting CTLA-4 and murine targeting PD-1) were tested on C57Bl/6 mice implanted subcutaneously with the GL261 murine tumor cell line. A signal composed of concatenated recordings of siRNA molecules targeting the murine CTLA-4 and PD-1 receptors (labeled A2) was used in immune competent C57Bl/6 mice. The mice were flank implanted with the murine glioblastoma cell line GL261. Mice were exposed to the signal continuously (24 hours a day) until tumor volumes reached the designated volume limit. Tumors were excised and analyzed via PAGE/Western blot for the expression of CTLA-4, PD-1, Ki67, Caspase 3, CD4 and CD8. Terminal blood draws were used for CBCs. We report the down regulation of the checkpoint inhibitors CTLA-4 in the exposed mice. Significant tumor volume reduction was observed in mice exposed to the siRNA signal compared to control mice;no adverse events were recorded. Cell blood counts (CBC) and protein expression patterns were observed to correlate with the expected function of protein expression inhibition of the targets.
文摘Glioblastoma multiforme(GBM)is an aggressive primary brain tumor characterized by extensive heterogeneity and vascular proliferation.Hypoxic conditions in the tissue microenvironment are considered a pivotal player leading tumor progression.Specifically,hypoxia is known to activate inducible factors,such as hypoxia-inducible factor 1alpha(HIF-1α),which in turn can stimulate tumor neo-angiogenesis through activation of various downward mediators,such as the vascular endothelial growth factor(VEGF).Here,we aimed to explore the role of HIF-1α/VEGF immunophenotypes alone and in combination with other prognostic markers or clinical and image analysis data,as potential biomarkers of GBM prognosis and treatment efficacy.We performed a systematic review(Medline/Embase,and Pubmed database search was completed by 16th of April 2024 by two independent teams;PRISMA 2020).We evaluated methods of immunoassays,cell viability,or animal or patient survival methods of the retrieved studies to assess unbiased data.We used inclusion criteria,such as the evaluation of GBM prognosis based on HIF-1α/VEGF expression,other biomarkers or clinical and imaging manifestations in GBM related to HIF-1α/VEGF expression,application of immunoassays for protein expression,and evaluation of the effectiveness of GBM therapeutic strategies based on HIF-1α/VEGF expression.We used exclusion criteria,such as data not reporting both HIF-1αand VEGF or prognosis.We included 50 studies investigating in total 1319 GBM human specimens,18 different cell lines or GBM-derived stem cells,and 6 different animal models,to identify the association of HIF-1α/VEGF immunophenotypes,and with other prognostic factors,clinical and macroscopic data in GBM prognosis and therapeutic approaches.We found that increased HIF-1α/VEGF expression in GBM correlates with oncogenic factors,such as miR-210-3p,Oct4,AKT,COX-2,PDGF-C,PLDO3,M2 polarization,or ALK,leading to unfavorable survival.Reduced HIF-1α/VEGF expression correlates with FIH-1,ADNP,or STAT1 upregulation,as well as with clinical manifestations,like epileptogenicity,and a favorable prognosis of GBM.Based on our data,HIF-1αor VEGF immunophenotypes may be a useful tool to clarify MRI-PET imaging data distinguishing between GBM tumor progression and pseudoprogression.Finally,HIF-1α/VEGF immunophenotypes can reflect GBM treatment efficacy,including combined first-line treatment with histone deacetylase inhibitors,thimerosal,or an active metabolite of irinotecan,as well as STAT3 inhibitors alone,and resulting in a favorable tumor prognosis and patient survival.These data were supported by a combination of variable methods used to evaluate HIF-1α/VEGF immunophenotypes.Data limitations may include the use of less sensitive detection methods in some cases.Overall,our data support HIF-1α/VEGF’s role as biomarkers of GBM prognosis and treatment efficacy.