Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns ...Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems.展开更多
Each year, during the dry season that precedes the summer wind and rainfall Indo-China Peninsula (ICP), significant biomass burning occurs and reaches its peak from March to April. This biomass burning generates large...Each year, during the dry season that precedes the summer wind and rainfall Indo-China Peninsula (ICP), significant biomass burning occurs and reaches its peak from March to April. This biomass burning generates large amounts of aerosols that impact East Asia and surrounding areas through the Asian monsoon. This study aims to investigate the potential connection between biomass burning over the ICP and precipitation in South China during May, along with the physical processes involved. The analysis is based on GLDAS soil moisture reanalysis data and CPC (NOAA) precipitation data covering the period from 1980 to 2021. The research findings indicate a negative (positive) correlation between biomass burning in the ICP region during spring and precipitation in the same region (South China) during May. The circulation patterns corresponding to years with biomass-burning emission anomalies are further investigated, and the impact of biomass-burning emissions in spring on soil moisture and temperature is examined. The results suggest that biomass-burning emissions can significantly affect atmospheric circulation and precipitation, ultimately leading to anomalous precipitation in South China.展开更多
Deterioration of air quality due to the increase in atmospheric emissions from biomass burning(BB)is one of the major environmental problems worldwide.In this study,we estimated the contributions of BB to PM_(2.5) con...Deterioration of air quality due to the increase in atmospheric emissions from biomass burning(BB)is one of the major environmental problems worldwide.In this study,we estimated the contributions of BB to PM_(2.5) concentrations in the municipalities of Soledad and Malambo located in the Colombian Caribbean.The evaluation period ranged from February 24 to March 30,2018,a period with a high number of BB events recorded in the surroundings of the evaluated sites.The contribution of BB to the two sampling sites was estimated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)dispersion model with forwarding trajectories from each of the burning points identified by satellite images(n=1089).The PM_(2.5) emissions were determined using the fire radiative power(FRP),obtained by remote-sensing data,and corresponded to the radiant energy released per time unit by burning vegetation.The average PM_(2.5) concentrations during the evaluation period were 19.91μg/m^(3) for Soledad and 22.44μg/m^(3) for Malambo.The average contribution of BB to these municipalities was 22.8%and 28.8%,respectively.The methodology used in this study allowed to estimate the contribution of this important source without knowledge of a previous tracer of BB,thereby increasing the use of the proposed procedure worldwide.This information would enable the implementation of effective mitigation,thereby diminishing the adverse impact of PM_(2.5) on the health of the population.展开更多
Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation t...Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation types to better monitor and control OBB in NEC.The MODIS C6 fire and land cover products,together with the emissions inventory from the Global Fire Assimilation System,were used in this study.The changes in the total number of MODIS fire points in NEC from 2003 to 2017 demonstrated a fluctuating but generally rising trend,with a peak during 2013–2017.Most fire points concentrated in two key periods,i.e.March–April(37%)and October–November(46%).The total number of crop residue burnings in March–April was basically slightly fluctuating and increased sharply from 2013,whilst the number in October–November had a fluctuating and upward trend until 2015,when a decline appeared.The amount of OBB in March–April was higher than that in October–November during 2016–17.OBB in Heilongjiang Province comprised a major proportion of all fires,which accounted for 70.7%from 2003 to 2017;however,the proportion was only 66.2%during 2013–2017.The largest proportion of all fires was in cropland(90.8%),then forest(5.3%)and grassland(3.1%).The cumulative emissions of fine particulate matter,nitrogen oxides,and ammonia from agricultural open burning in NEC reached 78.43 Gg,24.9 Gg,and 13.7 Gg for March–April during 2013–17,respectively,which were close to those in October–November.展开更多
In this work,the influence of South Asian biomass burning emissions on O_(3) and PM_(2.5)concentrations over the Tibetan Plateau(TP)is investigated by using the regional climate chemistry transport model WRF-Chem.The ...In this work,the influence of South Asian biomass burning emissions on O_(3) and PM_(2.5)concentrations over the Tibetan Plateau(TP)is investigated by using the regional climate chemistry transport model WRF-Chem.The simulation is validated by comparing meteorological fields and pollutant concentrations against in situ observations and gridded datasets,providing a clear perspective on the spatiotemporal variations of O_(3) and PM_(2.5)concentrations across the Indian subcontinent,including the Tibetan Plateau.Further sensitivity simulations and analyses show that emissions from South Asian biomass burning mainly affect local O_(3) concentrations.For example,contribution ratios were up to 20%in the Indo-Gangetic Plain during the pre-monsoon season but below 1%over the TP throughout the year 2016.In contrast,South Asian biomass burning emissions contributed more than 60%of PM_(2.5)concentration over the TP during the pre-monsoon season via significant contribution of primary PM_(2.5)components(black carbon and organic carbon)in western India that were lofted to the TP by westerly winds.Therefore,it is suggested that cutting emissions from South Asian biomass burning is necessary to alleviate aerosol pollution over the TP,especially during the pre-monsoon season.展开更多
The emission factors of nitrous oxide have been determined during the combustion of rice straws, maize stalks and wheat stalks in an enclosed combustion system. They equal to 84.4 ± 6.08g/t for rice straws,132...The emission factors of nitrous oxide have been determined during the combustion of rice straws, maize stalks and wheat stalks in an enclosed combustion system. They equal to 84.4 ± 6.08g/t for rice straws,132± 8.63g/t for maize stalks,and 27.3 ±1.79g/tfor wheat stalks,respectively. The uncertainties in the determination of nitrous oxide have been discussed. The N_2O-N(nitrogen in nitrous oxide emission)accounts for 0. 59% and 0. 87% of the total nitrogen in rice straws and maize stalks,respectively. An 1 ̄0 ×1 ̄0 grid map on the distribution of N_2O emission from biomass burning in China mainland was shown.展开更多
Background:The present article questions the relative importance of local-and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps.The study is based on soil charcoal datin...Background:The present article questions the relative importance of local-and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps.The study is based on soil charcoal dating and identification,several study sites in contrasting environmental conditions,and sampling of soil charcoal along the elevation gradient of each site.Based on local differences in biomass combustion,we hypothesize that local-scale or landscape-scale processes have driven the fire history,while combustion homogeneity supports the hypothesis of the importance of large-scale or macro-ecological processes,especially climate.Results:Biomass burning during the Holocene resulted from the nesting effects of climate,land use,and altitude,but was little influenced by slope exposure(north versus south),soil(dryness,pH,depth),and vegetation.The mid-Holocene(6500–2700 cal BP)was an important period for climate-driven biomass burning in the subalpine ecosystems of the western Alps,while fires over the last 2500 years appear much more episodic,prompting us to speculate that human activity has played a vital role in their occurrence.Conclusion:Our working hypothesis that the strength of local drivers should offset the effects of regional climate is not validated.The homogeneity of the fire regime between sites thus underscores that climate was the main driver during the Holocene of the western Alps.Long-term subalpine fires are controlled by climate at the millennial scale.Local conditions matter for little in determining variability at the century scale.The mid-Holocene was a chief period for climatic biomass burning in the subalpine zone,while fires during the late Holocene appear much more episodic,suggesting that social drivers has exercised key function on their control.展开更多
Characterization of carbonaceous species from the particulate matters (PM) after combustion of seven commonly used biomass species, albizia tree (Albizia julibrissin), dry leaves (mahogany tree), jackfruit tree (Artoc...Characterization of carbonaceous species from the particulate matters (PM) after combustion of seven commonly used biomass species, albizia tree (Albizia julibrissin), dry leaves (mahogany tree), jackfruit tree (Artocarpus heterophyllus), rain tree (Samanea saman), mahogany tree (Swietenia mahogany), cow dung and mango tree (Mangifer aindica) was done. PM samples were collected on quartz fiber filters emitted from biomass burning in a typical rural cooking stove. PM loaded filters were characterized with scanning electron microscope (SEM) for surface morphology, fourier transform infrared (FTIR) to determine the functional group of organic compounds. Black carbon (BC) and brown carbon (BrC) concentrations were determined with Aethalometer. A TOC analyzer was used to determine the total organic carbon (TOC) present in the biomass samples. The surface morphology was almost similar for all biomass burning PM samples. The average concentrations of BC and BrC were 5.85 ± 4.40 and 13.0 ± 8.80 μg·mDž, respectively. The emission factors of BC and BrC were 1.08 ± 0.89 and 2.35 ± 1.67 mg·gǃ, respectively. Concentration of BC was the highest in dry leaves and the lowest in mango tree. The emission factors of the determined biomass followed the sequence-dry leaves of mahogany > albizia tree > jackfruit tree > rain tree > cow dung > mahogany tree > mango tree. PM from mango tree had lower emissions compared to the other biomass species used in this study.展开更多
Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,...Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.展开更多
Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain ...Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.展开更多
Biomass burning has been known as one of main sources of Brown Carbon(BrC)in atmosphere.In this study,by controlling the combustion temperature at 250℃,350℃,and 450℃,the methanol soluble organic carbon(MSOC)and met...Biomass burning has been known as one of main sources of Brown Carbon(BrC)in atmosphere.In this study,by controlling the combustion temperature at 250℃,350℃,and 450℃,the methanol soluble organic carbon(MSOC)and methanol insoluble carbon(MISC)from pine wood burning was collected by impinger.UV–Vis,excitation emission matrix(EEM),TEM and FTIR spectra were applied to investigate the properties of BrC collected.For MSOC at 250℃ and 350℃,all the spectral profiles of UV–Vis absorption and excitation emission matrix are almost the same,while the EEM of MSOC at 450℃ are different from that of the other two.For MISC fuorescence was observed only in the case of 450℃.In the FTIR spectra,with the temperature increasing the peaks associated to the oxygen-contained functions was weakened,indicating the formation of the fuorophores with larger conjugated system,especially aromatic hydrocarbons.Our results show that biomass combustion at low temperature produces more oxygen-riched BrC,which possesses relatively lower light absorption,while at high temperature produces more aromatics hydrocarbons with relatively strong light absorption.The results of this work are helpful to trace the source of brown carbon and optimize biomass energy utilization.展开更多
Biomass is one most abundant resource on the earth providing important energies in support of so-cioeconomic development in many areas.Burning of biomass fuels comprises to nearly 10%of the total energy from anthropog...Biomass is one most abundant resource on the earth providing important energies in support of so-cioeconomic development in many areas.Burning of biomass fuels comprises to nearly 10%of the total energy from anthropogenic combustion processes:however,as the burning is usually incomplete,this process yields products of incomplete combustion posing consequently significant impacts on air quality,human health,and climate change.Here,we analyzed spatiotemporal characteristics in intentional and unintentional biomass burning from different sectors,discussed impacts of biomass burning emissions on indoor and outdoor air quality,and consequent influences on human health.The global total con-sumption amount of biomass including both natural and anthropogenic sources was approximately 7900 Tg in 2019,with significantly large regional and sectorial discrepancies among regions.Globally,anthropogenic biomass burning amounts increased gradually,but notably in some developing countries like China residential consumption of biomass fuels,as one large sector of biomass use,decreased over time.Uncommercial biomass consumption needs to be accurately quantified.There are relatively rich datasets of pollutant emission factors from biomass burning,including laboratory and field tests,but still large variations exit and contribute substantially to the uncertainty in emission inventory.Global pri-mary PM2.5,black carbon and organic carbon emissions from biomass burning were about 51,4.6,and 29 Tg,respectively,contributing to nearly 70%,55%,and 90%of the total emission from all sources,and emissions from the residential sector and open fires are major sources.Brown carbon emissions from biomass burning attracts growing interests but available studies adopted different methodologies challenging the comparability of those results.Biomass burning emissions polluted not only ambient air but more severely indoor air quality,adversely affecting human health.Future studies that should be emphasized and promoted are suggested.展开更多
Biomass burning(BB)is a very important emission source that significantly adversely impacts regional air quality.BB produces a large number of primary organic aerosol(POA)and black carbon(BC).Besides,BB also provides ...Biomass burning(BB)is a very important emission source that significantly adversely impacts regional air quality.BB produces a large number of primary organic aerosol(POA)and black carbon(BC).Besides,BB also provides many precursors for secondary organic aerosol(SOA)generation.In this work,the ratio of levoglucosan(LG)to organic carbon(OC)and the fire hotspots map was used to identify the open biomass burning(OBB)events,which occurred in two representative episodes,October 13 to November 30,2020,and April1 to April 30,2021.The ratio of organic aerosol(OA)to reconstructed PM_(2.5)concentration(PM_(2.5)^(*))increased with the increase of LG/OC.When LG/OC ratio is higher than 0.03,the highest OA/PM_(2.5)^(*)ratio can reach 80%,which means the contribution of OBB to OA is crucial.According to the ratio of LG to K^(+),LG to mannosan(MN)and the regional characteristics of Longfengshan,it can be determined that the crop residuals are the main fuel.The occurrence of OBB coincides with farmers’preferred choices,i.e.,burning biomass in“bright weather”.The“bright weather”refers to the meteorological conditions with high temperature,low humidity,and without rain.Meteorological factors indirectly affect regional biomass combustion pollution by influencing farmers’active choices.展开更多
Background:The characterization of surface and canopy fuel loadings in fire-prone pine ecosystems is critical for understanding fire behavior and anticipating the most harmful ecological effects of fire.Nevertheless,t...Background:The characterization of surface and canopy fuel loadings in fire-prone pine ecosystems is critical for understanding fire behavior and anticipating the most harmful ecological effects of fire.Nevertheless,the joint consideration of both overstory and understory strata in burn severity assessments is often dismissed.The aim of this work was to assess the role of total,overstory and understory pre-fire aboveground biomass(AGB),estimated by means of airborne Light Detection and Ranging(LiDAR)and Landsat data,as drivers of burn severity in a megafire occurred in a pine ecosystem dominated by Pinus pinaster Ait.in the western Mediterranean Basin.Results:Total and overstory AGB were more accurately estimated(R^(2) equal to 0.72 and 0.68,respectively)from LiDAR and spectral data than understory AGB(R^(2)=0.26).Density and height percentile LiDAR metrics for several strata were found to be important predictors of AGB.Burn severity responded markedly and non-linearly to total(R^(2)=0.60)and overstory(R ^(2)=0.53)AGB,whereas the relationship with understory AGB was weaker(R ^(2)=0.21).Nevertheless,the overstory plus understory AGB contribution led to the highest ability to predict burn severity(RMSE=122.46 in dNBR scale),instead of the joint consideration as total AGB(RMSE=158.41).Conclusions:This study novelty evaluated the potential of pre-fire AGB,as a vegetation biophysical property derived from LiDAR,spectral and field plot inventory data,for predicting burn severity,separating the contri-bution of the fuel loads in the understory and overstory strata in Pinus pinaster stands.The evidenced relationships between burn severity and pre-fire AGB distribution in Pinus pinaster stands would allow the implementation of threshold criteria to support decision making in fuel treatments designed to minimize crown fire hazard.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.32001324,32071777)Youth Lift Project of China Association for Science and Technology(Grant No.YESS20210370)Heilongjiang Province Outstanding Youth Joint Guidance Project(No.LH2021C012).
文摘Prescribed burning can alter soil microbial activity and spatially redistribute soil nutrient elements.However,no systematic,in-depth studies have investigated the impact of prescribed burning on the spatial patterns of soil microbial biomass in temperate forest ecosystems in Northeast China.The present study investigated the impacts of prescribed burning on the small-scale spatial heterogeneity of microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)in the upper(0–10 cm)and lower(10–20 cm)soil layers in Pinus koraiensis and Quercus mongolica forests and explored the factors that infl uence spatial variations of these variables after prescribed burning.Our results showed that,MBC declined by approximately 30%in the 10–20 cm soil layer in the Q.mongolica forest,where there were no signifi cant eff ects on the soil MBC and MBN contents of the P.koraiensis forest(p>0.05)after prescribed burning.Compared to the MBC of the Q.mongolica forest before the prescribed burn,MBC spatial dependence in the upper and lower soil layers was approximately 7%and 2%higher,respectively.After the prescribed burn,MBN spatial dependence in the upper and lower soil layers in the P.koraiensis forest was approximately 1%and 13%lower,respectively,than that before the burn,and the MBC spatial variability in the 0–10 cm soil layer in the two forest types was explained by the soil moisture content(SMC),whereas the MBN spatial variability in the 0–10 cm soil layer in the two forests was explained by the soil pH and nitrate nitrogen(NO_(3)^(–)-N),respectively.In the lower soil layer(10–20 cm)of the Q.mongolica forest,elevation and ammonium nitrogen(NH 4+-N)were the main factors aff ecting the spatial variability of MBC and MBN,respectively.In the 10–20 cm soil layer of the P.koraiensis forest,NO_(3)^(–)-N and slope were the main factors aff ecting the spatial variability of MBC and MBN,respectively,after the burn.The spatial distributions of MBC and MBN in the two forests were largely structured with higher spatial autocorrelation(relative structural variance C/[C 0+C]>0.75).However,the factors infl uencing the spatial variability of MBC and MBN in the two forest types were not consistent between the upper and lower soil layers with prescribed burning.These fi ndings have important implications for developing sustainable management and conservation policies for forest ecosystems.
文摘Each year, during the dry season that precedes the summer wind and rainfall Indo-China Peninsula (ICP), significant biomass burning occurs and reaches its peak from March to April. This biomass burning generates large amounts of aerosols that impact East Asia and surrounding areas through the Asian monsoon. This study aims to investigate the potential connection between biomass burning over the ICP and precipitation in South China during May, along with the physical processes involved. The analysis is based on GLDAS soil moisture reanalysis data and CPC (NOAA) precipitation data covering the period from 1980 to 2021. The research findings indicate a negative (positive) correlation between biomass burning in the ICP region during spring and precipitation in the same region (South China) during May. The circulation patterns corresponding to years with biomass-burning emission anomalies are further investigated, and the impact of biomass-burning emissions in spring on soil moisture and temperature is examined. The results suggest that biomass-burning emissions can significantly affect atmospheric circulation and precipitation, ultimately leading to anomalous precipitation in South China.
文摘Deterioration of air quality due to the increase in atmospheric emissions from biomass burning(BB)is one of the major environmental problems worldwide.In this study,we estimated the contributions of BB to PM_(2.5) concentrations in the municipalities of Soledad and Malambo located in the Colombian Caribbean.The evaluation period ranged from February 24 to March 30,2018,a period with a high number of BB events recorded in the surroundings of the evaluated sites.The contribution of BB to the two sampling sites was estimated using the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)dispersion model with forwarding trajectories from each of the burning points identified by satellite images(n=1089).The PM_(2.5) emissions were determined using the fire radiative power(FRP),obtained by remote-sensing data,and corresponded to the radiant energy released per time unit by burning vegetation.The average PM_(2.5) concentrations during the evaluation period were 19.91μg/m^(3) for Soledad and 22.44μg/m^(3) for Malambo.The average contribution of BB to these municipalities was 22.8%and 28.8%,respectively.The methodology used in this study allowed to estimate the contribution of this important source without knowledge of a previous tracer of BB,thereby increasing the use of the proposed procedure worldwide.This information would enable the implementation of effective mitigation,thereby diminishing the adverse impact of PM_(2.5) on the health of the population.
基金partially supported by the National Natural Science Foundation of China grant number 41775162
文摘Open biomass burning(OBB)has a significant impact on the heavy haze pollution in Northeast China(NEC)in recent years,which requires the investigation of the spatiotemporal variations of OBB with different vegetation types to better monitor and control OBB in NEC.The MODIS C6 fire and land cover products,together with the emissions inventory from the Global Fire Assimilation System,were used in this study.The changes in the total number of MODIS fire points in NEC from 2003 to 2017 demonstrated a fluctuating but generally rising trend,with a peak during 2013–2017.Most fire points concentrated in two key periods,i.e.March–April(37%)and October–November(46%).The total number of crop residue burnings in March–April was basically slightly fluctuating and increased sharply from 2013,whilst the number in October–November had a fluctuating and upward trend until 2015,when a decline appeared.The amount of OBB in March–April was higher than that in October–November during 2016–17.OBB in Heilongjiang Province comprised a major proportion of all fires,which accounted for 70.7%from 2003 to 2017;however,the proportion was only 66.2%during 2013–2017.The largest proportion of all fires was in cropland(90.8%),then forest(5.3%)and grassland(3.1%).The cumulative emissions of fine particulate matter,nitrogen oxides,and ammonia from agricultural open burning in NEC reached 78.43 Gg,24.9 Gg,and 13.7 Gg for March–April during 2013–17,respectively,which were close to those in October–November.
基金supported by the National Natural Science Foundation of China (Grant Nos.42071096 and 41901071)Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(Grant No. 2019QZKK0605)+3 种基金State Key Laboratory of Cryospheric Science (Grant No. SKLCSZZ-2022)Strategic Priority Research Program of Chinese Academy of Sciencesthe Open Program (Grant No. SKLCS2020-10) from State Key Laboratory of Cryospheric ScienceYouth Science Foundation of Hebei Province (Grant No.D2019106042)
文摘In this work,the influence of South Asian biomass burning emissions on O_(3) and PM_(2.5)concentrations over the Tibetan Plateau(TP)is investigated by using the regional climate chemistry transport model WRF-Chem.The simulation is validated by comparing meteorological fields and pollutant concentrations against in situ observations and gridded datasets,providing a clear perspective on the spatiotemporal variations of O_(3) and PM_(2.5)concentrations across the Indian subcontinent,including the Tibetan Plateau.Further sensitivity simulations and analyses show that emissions from South Asian biomass burning mainly affect local O_(3) concentrations.For example,contribution ratios were up to 20%in the Indo-Gangetic Plain during the pre-monsoon season but below 1%over the TP throughout the year 2016.In contrast,South Asian biomass burning emissions contributed more than 60%of PM_(2.5)concentration over the TP during the pre-monsoon season via significant contribution of primary PM_(2.5)components(black carbon and organic carbon)in western India that were lofted to the TP by westerly winds.Therefore,it is suggested that cutting emissions from South Asian biomass burning is necessary to alleviate aerosol pollution over the TP,especially during the pre-monsoon season.
文摘The emission factors of nitrous oxide have been determined during the combustion of rice straws, maize stalks and wheat stalks in an enclosed combustion system. They equal to 84.4 ± 6.08g/t for rice straws,132± 8.63g/t for maize stalks,and 27.3 ±1.79g/tfor wheat stalks,respectively. The uncertainties in the determination of nitrous oxide have been discussed. The N_2O-N(nitrogen in nitrous oxide emission)accounts for 0. 59% and 0. 87% of the total nitrogen in rice straws and maize stalks,respectively. An 1 ̄0 ×1 ̄0 grid map on the distribution of N_2O emission from biomass burning in China mainland was shown.
基金Financial support was provided to C.C.through a French incentive action fund from the Institut National des Sciences de l’Univers(INSU ACI ECCO)by an ARTEMIS grant for datings(PALEOFIRE program,INSU-CNRS,France).
文摘Background:The present article questions the relative importance of local-and large-scale processes on the long-term dynamics of fire in the subalpine belt in the western Alps.The study is based on soil charcoal dating and identification,several study sites in contrasting environmental conditions,and sampling of soil charcoal along the elevation gradient of each site.Based on local differences in biomass combustion,we hypothesize that local-scale or landscape-scale processes have driven the fire history,while combustion homogeneity supports the hypothesis of the importance of large-scale or macro-ecological processes,especially climate.Results:Biomass burning during the Holocene resulted from the nesting effects of climate,land use,and altitude,but was little influenced by slope exposure(north versus south),soil(dryness,pH,depth),and vegetation.The mid-Holocene(6500–2700 cal BP)was an important period for climate-driven biomass burning in the subalpine ecosystems of the western Alps,while fires over the last 2500 years appear much more episodic,prompting us to speculate that human activity has played a vital role in their occurrence.Conclusion:Our working hypothesis that the strength of local drivers should offset the effects of regional climate is not validated.The homogeneity of the fire regime between sites thus underscores that climate was the main driver during the Holocene of the western Alps.Long-term subalpine fires are controlled by climate at the millennial scale.Local conditions matter for little in determining variability at the century scale.The mid-Holocene was a chief period for climatic biomass burning in the subalpine zone,while fires during the late Holocene appear much more episodic,suggesting that social drivers has exercised key function on their control.
文摘Characterization of carbonaceous species from the particulate matters (PM) after combustion of seven commonly used biomass species, albizia tree (Albizia julibrissin), dry leaves (mahogany tree), jackfruit tree (Artocarpus heterophyllus), rain tree (Samanea saman), mahogany tree (Swietenia mahogany), cow dung and mango tree (Mangifer aindica) was done. PM samples were collected on quartz fiber filters emitted from biomass burning in a typical rural cooking stove. PM loaded filters were characterized with scanning electron microscope (SEM) for surface morphology, fourier transform infrared (FTIR) to determine the functional group of organic compounds. Black carbon (BC) and brown carbon (BrC) concentrations were determined with Aethalometer. A TOC analyzer was used to determine the total organic carbon (TOC) present in the biomass samples. The surface morphology was almost similar for all biomass burning PM samples. The average concentrations of BC and BrC were 5.85 ± 4.40 and 13.0 ± 8.80 μg·mDž, respectively. The emission factors of BC and BrC were 1.08 ± 0.89 and 2.35 ± 1.67 mg·gǃ, respectively. Concentration of BC was the highest in dry leaves and the lowest in mango tree. The emission factors of the determined biomass followed the sequence-dry leaves of mahogany > albizia tree > jackfruit tree > rain tree > cow dung > mahogany tree > mango tree. PM from mango tree had lower emissions compared to the other biomass species used in this study.
基金supported by the National Natural Science Foundation of China (No.41875155)Natural Key Research and Development Program of China (No.2019YFA0607004)+1 种基金Environment and Conservation Fund/Woo Wheelock Green Fund (No.ECWW09EG04)Strategic Priority Research Program (B)of the Chinese Academy of Sciences (No.XDB05040502)。
文摘Fireworks(FW)could significantly worsen air quality in short term during celebrations.Due to similar tracers with biomass burning(BB),the fast and precise qualification of FW and BB is still challenging.In this study,online bulk and single-particle measurements were combined to investigate the contributions of FW and BB to the overall mass concentrations of PM_(2.5)and specific chemical species by positive matrix factorization(PMF)during the Chinese New Year in Hong Kong in February 2013.With combined information,fresh/aged FW(abundant ^(140)K_(2)NO_(3)^(+)and ^(213)K_(3)SO_(4)^(+)formed from ^(113)K_(2)Cl^(+)discharged by fresh FW)can be extracted from the fresh/aged BB sources,in addition to the Second Aerosol,Vehicles+Road Dust,and Sea Salt factors.The contributions of FW and BB were investigated during three high particle matter episodes influenced by the pollution transported from the Pearl River Delta region.The fresh BB/FW contributed 39.2%and 19.6%to PM_(2.5)during the Lunar Chinese New Year case.However,the contributions of aged FW/BB enhanced in the last two episodes due to the aging process,evidenced by high contributions from secondary aerosols.Generally,the fresh BB/FW showed more significant contributions to nitrate(35.1%and15.0%,respectively)compared with sulfate(25.1%and 5.9%,respectively)and OC(14.8%and11.1%,respectively)on average.In comparison,the aged FW contributed more to sulfate(13.4%).Overall,combining online bulk and single-particle measurement data can combine both instruments’advantages and provide a new perspective for applying source apportionment of aerosols using PMF.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2001AA641060 2003AA641040)the National Basic Research Program (973) of China (No. 2002CB410801).
文摘Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood. In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PMzs) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed. 141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5, and contained approximately equal amounts of guaiacyl and syringyl compounds. 13-Sitostrol also made up relatively a large fraction of PMz5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal alkanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.
基金financially supported by the Natural Science Foundation of Beijing Municipality (No.8222074)the National Natural Science Foundation of China (No.81961138011)。
文摘Biomass burning has been known as one of main sources of Brown Carbon(BrC)in atmosphere.In this study,by controlling the combustion temperature at 250℃,350℃,and 450℃,the methanol soluble organic carbon(MSOC)and methanol insoluble carbon(MISC)from pine wood burning was collected by impinger.UV–Vis,excitation emission matrix(EEM),TEM and FTIR spectra were applied to investigate the properties of BrC collected.For MSOC at 250℃ and 350℃,all the spectral profiles of UV–Vis absorption and excitation emission matrix are almost the same,while the EEM of MSOC at 450℃ are different from that of the other two.For MISC fuorescence was observed only in the case of 450℃.In the FTIR spectra,with the temperature increasing the peaks associated to the oxygen-contained functions was weakened,indicating the formation of the fuorophores with larger conjugated system,especially aromatic hydrocarbons.Our results show that biomass combustion at low temperature produces more oxygen-riched BrC,which possesses relatively lower light absorption,while at high temperature produces more aromatics hydrocarbons with relatively strong light absorption.The results of this work are helpful to trace the source of brown carbon and optimize biomass energy utilization.
基金supported by the National Natural Science Foundation of China(grant Nos.42077328,42130711,42107266)Beijing Key Lab Plant Resources Research and Development(grant No.PRRD-2022-YB1).
文摘Biomass is one most abundant resource on the earth providing important energies in support of so-cioeconomic development in many areas.Burning of biomass fuels comprises to nearly 10%of the total energy from anthropogenic combustion processes:however,as the burning is usually incomplete,this process yields products of incomplete combustion posing consequently significant impacts on air quality,human health,and climate change.Here,we analyzed spatiotemporal characteristics in intentional and unintentional biomass burning from different sectors,discussed impacts of biomass burning emissions on indoor and outdoor air quality,and consequent influences on human health.The global total con-sumption amount of biomass including both natural and anthropogenic sources was approximately 7900 Tg in 2019,with significantly large regional and sectorial discrepancies among regions.Globally,anthropogenic biomass burning amounts increased gradually,but notably in some developing countries like China residential consumption of biomass fuels,as one large sector of biomass use,decreased over time.Uncommercial biomass consumption needs to be accurately quantified.There are relatively rich datasets of pollutant emission factors from biomass burning,including laboratory and field tests,but still large variations exit and contribute substantially to the uncertainty in emission inventory.Global pri-mary PM2.5,black carbon and organic carbon emissions from biomass burning were about 51,4.6,and 29 Tg,respectively,contributing to nearly 70%,55%,and 90%of the total emission from all sources,and emissions from the residential sector and open fires are major sources.Brown carbon emissions from biomass burning attracts growing interests but available studies adopted different methodologies challenging the comparability of those results.Biomass burning emissions polluted not only ambient air but more severely indoor air quality,adversely affecting human health.Future studies that should be emphasized and promoted are suggested.
基金supported by the Natural Science Foundation of Heilongjiang Province(No.LH2020D011)the S&T Development Fund of CAMS(No.2020KJ003)the Open Research Fund of State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin,China Institute of Water Resources and Hydropower Research(No.201913)。
文摘Biomass burning(BB)is a very important emission source that significantly adversely impacts regional air quality.BB produces a large number of primary organic aerosol(POA)and black carbon(BC).Besides,BB also provides many precursors for secondary organic aerosol(SOA)generation.In this work,the ratio of levoglucosan(LG)to organic carbon(OC)and the fire hotspots map was used to identify the open biomass burning(OBB)events,which occurred in two representative episodes,October 13 to November 30,2020,and April1 to April 30,2021.The ratio of organic aerosol(OA)to reconstructed PM_(2.5)concentration(PM_(2.5)^(*))increased with the increase of LG/OC.When LG/OC ratio is higher than 0.03,the highest OA/PM_(2.5)^(*)ratio can reach 80%,which means the contribution of OBB to OA is crucial.According to the ratio of LG to K^(+),LG to mannosan(MN)and the regional characteristics of Longfengshan,it can be determined that the crop residuals are the main fuel.The occurrence of OBB coincides with farmers’preferred choices,i.e.,burning biomass in“bright weather”.The“bright weather”refers to the meteorological conditions with high temperature,low humidity,and without rain.Meteorological factors indirectly affect regional biomass combustion pollution by influencing farmers’active choices.
基金financially supported by the Spanish Ministry of Economy and Competitivenessthe European Regional Development Fund (ERDF)+8 种基金in the framework of the GESFIRE (AGL2013-48189-C2-1-R)FIRESEVES (AGL2017-86075-C2-1-R) projectsby the Regional Government of Castilla and León in the framework of the FIRECYL (LE033U14)SEFIRECYL (LE001P17)WUIFIRECYL(LE005P20) projectsP.M. Fernandes contributed to this article within the framework of the UIDB/04033/2020 projectfunded by the Portuguese Foundation for Science and Technology (FCT). J.M.Fern andezGuisuraga is supported by a predoctoral fellowship (FPU16/03070)a research stay grant (EST19/00310) from the Spanish Ministry of Education
文摘Background:The characterization of surface and canopy fuel loadings in fire-prone pine ecosystems is critical for understanding fire behavior and anticipating the most harmful ecological effects of fire.Nevertheless,the joint consideration of both overstory and understory strata in burn severity assessments is often dismissed.The aim of this work was to assess the role of total,overstory and understory pre-fire aboveground biomass(AGB),estimated by means of airborne Light Detection and Ranging(LiDAR)and Landsat data,as drivers of burn severity in a megafire occurred in a pine ecosystem dominated by Pinus pinaster Ait.in the western Mediterranean Basin.Results:Total and overstory AGB were more accurately estimated(R^(2) equal to 0.72 and 0.68,respectively)from LiDAR and spectral data than understory AGB(R^(2)=0.26).Density and height percentile LiDAR metrics for several strata were found to be important predictors of AGB.Burn severity responded markedly and non-linearly to total(R^(2)=0.60)and overstory(R ^(2)=0.53)AGB,whereas the relationship with understory AGB was weaker(R ^(2)=0.21).Nevertheless,the overstory plus understory AGB contribution led to the highest ability to predict burn severity(RMSE=122.46 in dNBR scale),instead of the joint consideration as total AGB(RMSE=158.41).Conclusions:This study novelty evaluated the potential of pre-fire AGB,as a vegetation biophysical property derived from LiDAR,spectral and field plot inventory data,for predicting burn severity,separating the contri-bution of the fuel loads in the understory and overstory strata in Pinus pinaster stands.The evidenced relationships between burn severity and pre-fire AGB distribution in Pinus pinaster stands would allow the implementation of threshold criteria to support decision making in fuel treatments designed to minimize crown fire hazard.