The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental re...The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.展开更多
Four sequence batch reactors(SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding(ADF) mode with different configurations of sludge retention time(SRT), carbo...Four sequence batch reactors(SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding(ADF) mode with different configurations of sludge retention time(SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate(PHA) accumulating mixed microbial cultures(MMCs) from municipal activated sludge.The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism(T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5 days, carbon concentration of 2.52 g COD/L and initial biomass concentration of3.65 g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures(with the maximum PHA content and PHA storage yield(YPHA/S) of61.26% and 0.68 mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.展开更多
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and p...Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.展开更多
基金Sponsored by the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology(Grant No.2010DX06)the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)the Harbin Science and Technology Bureau(Grant No.2009RFXXS004)
文摘The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.
基金supported by the National Natural Science Foundation of China(No.51378142)the Program for New Century Excellent Talents in University(No.NCET-12-0156)+1 种基金the Open Project of the State Key Laboratory of Urban Water ResourceEnvironment(Harbin institute of Technology)(No.2015DX10)
文摘Four sequence batch reactors(SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding(ADF) mode with different configurations of sludge retention time(SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate(PHA) accumulating mixed microbial cultures(MMCs) from municipal activated sludge.The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism(T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5 days, carbon concentration of 2.52 g COD/L and initial biomass concentration of3.65 g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures(with the maximum PHA content and PHA storage yield(YPHA/S) of61.26% and 0.68 mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of the Chinese Academy of Sciences(Grant No.XDB03030505)the National Key Technology Research and Design Program of China(Grant No.2010BAE00739-03)
文摘Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.