期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
5-Hydroxymethylfurfural: A key intermediate for efficient biomass conversion 被引量:1
1
作者 Yajie Zhang Jian Zhang Dangsheng Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期548-551,共4页
Biomass has been widely accepted as a "zero-emission" energy carrier to take place fossil fuels, while its catalytic conversion is still limited by low efficiency of carbon atoms. Biomass conversion via 5- hydroxyme... Biomass has been widely accepted as a "zero-emission" energy carrier to take place fossil fuels, while its catalytic conversion is still limited by low efficiency of carbon atoms. Biomass conversion via 5- hydroxymethylfurfural (HMF) as a platform chemical is highly attractive because almost all carbon atoms could he retained in the downstream chemicals under mild reaction conditions. Here we summarize recent fundamental researches and industrial progresses on all involved processes including biomass degradation to hexoses, HMF formation, hydrogenation and oxidation of HMF. 展开更多
关键词 biomass conversion 5-Hydroxymethylfur rural Catalysis Energy
下载PDF
Torrefied Pellets as Fuel for Two-Stage Technology of Biomass Conversion into Synthesis Gas
2
作者 Victor Zaichenko Valentin Kosov Julia Kuzmina Vladimir Lavrenov 《Journal of Energy and Power Engineering》 2014年第1期79-84,共6页
One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of usin... One of the most important properties of the torrefied pellets, along with high calorific value, is their hydrophobicity. Inability to absorb moisture and self-destruct under its influence determine possibility of using of pellets in the pyrolysis reactor. For the technology of two-stage thermal processing of biomass, developed at the Joint Institute for High Temperatures, the amount of synthesis gas which can be obtained from one kilogram of torrefied pellets is also important. A construction of the pilot torrefaction reactor powered by flue gas is shown. The results of experimental investigations of hydrophobicity of torrefied pellets produced by the reactor and quantity of synthesis gas which can be obtained by two-stage thermal processing of the pellets are presented. It is shown that torrefaction allows simplifying the process of conversion of pellets into synthesis gas without significant reduction in the volume of the gas. 展开更多
关键词 biomass conversion TORREFACTION PYROLYSIS syngas.
下载PDF
Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO_(2)coupled with biomass conversion
3
作者 Guangbiao Cao Haoran Xing +4 位作者 Haoguan Gui Chao Yao Yinjuan Chen Yongsheng Chen Xiazhang Li 《Nano Research》 SCIE EI CSCD 2024年第6期5061-5072,共12页
Simultaneous conversion of CO_(2)and biomass into value-added chemicals through solar-driven catalysis holds tremendous importance for fostering a sustainable circular economy.Herein,plasmonic Bi quantum dots were imm... Simultaneous conversion of CO_(2)and biomass into value-added chemicals through solar-driven catalysis holds tremendous importance for fostering a sustainable circular economy.Herein,plasmonic Bi quantum dots were immobilized on phosphoric acid modified attapulgite(P-ATP)nanorod using an in-situ reduction-deposition method,and were employed for photocatalytic reduction of CO_(2)coupled with oxidation of biomass-derived benzyl alcohol.Results revealed that Bi atoms successfully integrated into the basal structure of P-ATP,forming chemically coordinated Bi-O-Si bonds that served as efficient transportation channels for electrons.The incorporation of high-density monodispersed Bi quantum dots induced a surface plasmon resonance(SPR)effect,expanding the light absorption range into the near-infrared region.As a consequence,the photo-thermal transformation was significantly accelerated,leading to enhanced reaction kinetics.Notably,50%Bi/P-ATP nanocomposite exhibited the highest plasmon-mediated photocatalytic CH4 generation(115.7μmol·g^(−1)·h^(−1))and CO generation(44.9μmol·g^(−1)·h^(−1)),along with remarkable benzaldehyde generation rate of 79.5μmol·g^(−1)·h^(−1)in the photo-redox coupling system under solar light irradiation.The hydrogen protons released from the oxidation of benzyl alcohol facilitated the incorporation of more hydrogen protons into CO_(2)to form key CH_(3)O−intermediates.This work demonstrates the synergistic solar-driven valorization of CO_(2)and biomass using natural mineral based catalyst. 展开更多
关键词 photothermal catalysis clay mineral PLASMON CO_(2)reduction biomass conversion
原文传递
Electrochemical reduction of carbon dioxide to produce formic acid coupled with oxidative conversion of biomass
4
作者 Xi Liu Yifan Wang +2 位作者 Zhiwei Dai Daihong Gao Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期705-729,共25页
Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(... Electrochemical reduction of CO_(2)(CO_(2)RR)has become a research hot spot in recent years in the context of carbon neutrality.HCOOH is one of the most promising products obtained by electrochemical reduction of CO_(2) due to its high energy value as estimated by market price per energy unit and wide application in chemical industry.Biomass is the most abundant renewable resource in the natural world.Coupling biomass oxidative conversion with CO_(2)RR driven by renewable electricity would well achieve carbon negativity.In this work,we comprehensively reviewed the current research progress on CO_(2)RR to produce HCOOH and coupled system for conversion of biomass and its derivatives to produce value-added products.Sn-and Bi-based electrocatalysts are discussed for CO_(2)RR with regards to the structure of the catalyst and reaction mechanisms.Electro-oxidation reactions of biomass derived sugars,alcohols,furan aldehydes and even polymeric components of lignocellulose were reviewed as alternatives to replace oxygen evolution reaction(OER)in the conventional electrolysis process.It was recommended that to further improve the efficiency of the coupled system,future work should be focused on the development of more efficient and stable catalysts,careful design of the electrolytic cells for improving the mass transfer and development of environment-friendly processes for recovering the formed formate and biomass oxidation products. 展开更多
关键词 Electrochemical reduction of CO_(2) Formic acid Oxidative conversion of biomass LIGNOCELLULOSE Coupled system
下载PDF
Synthesis of ternary magnetic nanoparticles for enhanced catalytic conversion of biomass-derived methyl levulinate into γ-valerolactone 被引量:1
5
作者 Xueli Chen Tingting Zhao +6 位作者 Xuesong Zhang Yuxuan Zhang Haitao Yu Qian Lyu Xiwen Jia Lujia Han Weihua Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期430-441,I0010,共13页
Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst prepar... Conversion of levulinic acid and its esters into versatile y-valerolactone(GVL)is a pivotal and challenging step in biorefineries,limited by high catalyst cost,the use of hydrogen atmosphere,or tedious catalyst preparation and recycling process.Here we have successfully synthesized a ternary magnetic nanoparticle catalyst(Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)),over which biomass-derived methyl levulinate(ML)can be quantitively converted to GVL with an extremely high selectivity of>99%and yield of-98%in the absence of molecular hydrogen.Al_(2)O_(3)-ZrO_(2)/Fe_(3)O_(4)(5)incorporates simultaneously inexpensive alumina and zirconia onto magnetite support by a facile coprecipitation method,giving rise to a core-shell structure,welldistributed acid-base sites,and strong magnetism,as evidenced by the X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM),transmission electron microscopy(TEM),high-angle annular dark-field scanning-TEM(HAADF-STEM),SEM-energy dispersive Xray spectroscopy(SEM-EDX),temperature-programmed desorption of ammonia(NH3-TPD),temperature-programmed desorption of carbon dioxide(CO_(2)-TPD),pyridine-adsorption infrared spectra(Py-IR),and vibrating sample magnetometry(VSM).Such characteristics enable it to be highly active and easily recycled by a magnet for at least five cycles with a slight loss of its catalytic activity,avoiding a time-consuming and energy-intensive reactivation process.It is found that there was a synergistic effect among the metal oxides,and the high efficiency and selectivity originating from such synergism are evidenced by kinetic studies.Furthermore,a reaction mechanism regarding the hydrogenation of ML to GVL is proposed by these findings,coupled with gas chromatography-mass spectrometry(GC-MS)analysis.Accordingly,this readily synthesized and recovered magnetic nanocatalyst for conversion of biomassderived ML into GVL can provide an eco-friendly and safe way for biomass valorization. 展开更多
关键词 Magnetic nanoparticles Bifunctional catalyst biomass conversion Catalytic transfer hydrogenation γ-Valerolactone
下载PDF
Sustainable Furfural Biomass Feedstocks Electrooxidation toward Value-Added Furoic Acid with Energy-Saving H_(2) Fuel Production Using Pt-Decorated Co_(3)O_(4) Nanospheres 被引量:1
6
作者 Talshyn Begildayeνa Jayaraman Theerthagiri +4 位作者 Seung Jun Lee Ahreum Min Gyeong-Ah Kim Siνakumar Manickam Myong Yong Choi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期350-358,共9页
Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired ... Here,furfural oxidation was performed to replace the kinetically sluggish O_(2)evolution reaction(OER).Pt-Co_(3)O_(4)nanospheres were developed via pulsed laser ablation in liquid(PLAL)in a single step for the paired electrocatalysis of an H_(2)evolution reaction(HER)and furfural oxidation reaction(FOR).The FOR afforded a high furfural conversion(44.2%)with a major product of 2-furoic acid after a 2-h electrolysis at 1.55 V versus reversible hydrogen electrode in a 1.0-M KOH/50-mM furfural electrolyte.The Pt-Co_(3)O_(4)electrode exhibited a small overpotential of 290 mV at 10 mA cm^(-2).As an anode and cathode in an electrolyzer system,the Pt-Co_(3)O_(4)electrocatalyst required only a small applied cell voltage of~1.83 V to deliver 10 mA cm^(-2),compared with that of the pure water electrolyzer(OER||HER,~1.99 V).This study simultaneously realized the integrated production of energy-saving H_(2)fuel at the cathode and 2-furoic acid at the anode. 展开更多
关键词 biomass conversion electrochemical furfural oxidation overall water splitting Pt-Co_(3)O_(4)electrocatalyst pulsed laser ablation in liquid
下载PDF
Biomass valorization via electrocatalytic carbon–carbon bond cleavage
7
作者 Keping Wang Zhenyan Guo +5 位作者 Min Zhou Ying Yang Lanyun Li Hu Li Rafael Luque Shunmugavel Saravanamurugan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期542-578,共37页
Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon... Renewable electrocatalytic upgrading of biomass feedstocks into valuable chemicals is one of the promising strategies to relieve the pressure of traditional energy-based systems.Through electrocatalytic carbon–carbon bond cleavage of high selectivity,various functionalized molecules,such as organic acids,amides,esters,and nitriles,have great potential to be accessed from biomass.However,it has merely received finite concerns and interests in the biorefinery.This review first showcases the research progress on the electrocatalytic conversion of lipid/sugar-and lignin-derived molecules(e.g.,glycerol,mesoerythritol,xylose,glucose,1-phenylethanol,and cyclohexanol)into organic acids via specific carbon–carbon bond scission processes,with focus on disclosing reaction mechanisms,recognizing actual active species,and collecting feasible modification strategies.For the guidance of further extensive studies on biomass valorization,organic transformations via a variety of reactions,including decarboxylation,ring-opening,rearrangement,reductive hydrogenation,and carboxylation,are also disclosed for the construction of similar carbon skeletons/scaffolds.The remaining challenges,prospective applications,and future objectives in terms of biomass conversion are also proposed.This review is expected to provide references to develop renewed electrocatalytic carbon–carbon bond cleavage transformation paths/strategies for biomass upgrading. 展开更多
关键词 ELECTROCATALYSIS biomass conversion Carbon-carbon bond cleavage Organic acids
下载PDF
Developing individual tree-based models for estimating aboveground biomass of five key coniferous species in China 被引量:5
8
作者 Weisheng Zeng Liyong Fu +3 位作者 Ming Xu Xuejun Wang Zhenxiong Chen Shunbin Yao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1251-1261,共11页
Estimating individual tree biomass is critical to forest carbon accounting and ecosystem service modeling.In this study,we developed one-(tree diameter only) and two-variable(tree diameter and height) biomass equa... Estimating individual tree biomass is critical to forest carbon accounting and ecosystem service modeling.In this study,we developed one-(tree diameter only) and two-variable(tree diameter and height) biomass equations,biomass conversion factor(BCF) models,and an integrated simultaneous equation system(ISES) to estimate the aboveground biomass for five conifer species in China,i.e.,Cunninghamia lanceolata(Lamb.) Hook.,Pinus massoniana Lamb.,P.yunnanensis Faranch,P.tabulaeformis Carr.and P.elliottii Engelm.,based on the field measurement data of aboveground biomass and stem volumes from 1055 destructive sample trees across the country.We found that all three methods,including the one-and two-variable equations,could adequately estimate aboveground biomass with a mean prediction error less than 5%,except for Pinus yunnanensis which yielded an error of about 6%.The BCF method was slightly poorer than the biomass equation and the ISES methods.The average coefficients of determination(R^2) were 0.944,0.938 and 0.943 and the mean prediction errors were 4.26,4.49 and 4.29% for the biomass equation method,the BCF method and the ISES method,respectively.The ISES method was the best approach for estimating aboveground biomass,which not only had high accuracy but also could estimate stocking volumes simultaneously that was compatible with aboveground biomass.In addition,we found that it is possible to develop a species-invariant one-variable allometric model for estimating aboveground biomass of all the five coniferous species.The model had an exponent parameter of 7/3 and the intercept parameter a_0 could be estimated indirectly from stem basic density(a_0= 0.294 q). 展开更多
关键词 biomass models Allometric equations biomass conversion factor Error-in-variable simultaneous equations
下载PDF
One-pot synthesis of 2,5-bis(hydroxymethyl)furan from biomass derived 5-(chloromethyl)furfural in high yield 被引量:2
9
作者 Binglin Chen Yunchao Feng +9 位作者 Sen Ma Weizhen Xie Guihua Yan Zheng Li Jonathan Sperry Shuliang Yang Xing Tang Yong Sun Lu Lin Xianhai Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期421-428,I0011,共9页
5-(Chloromethyl)furfural(CMF),as a new platform molecular,has become a hot topic in the field of biorefinery.Herein,the one-pot conversion of CMF to 2,5-bis(hydroxymethyl)furan(BHMF)in the water phase was demonstrated... 5-(Chloromethyl)furfural(CMF),as a new platform molecular,has become a hot topic in the field of biorefinery.Herein,the one-pot conversion of CMF to 2,5-bis(hydroxymethyl)furan(BHMF)in the water phase was demonstrated for the first time.A 91%BHMF yield was obtained over Ru/Cu Oxcatalyst,and BHMF was mainly produced by the consecutive hydrolysis and hydrogenation of CMF with 5-hydroxymethylfurfural(HMF)as an intermediate.Kinetic studies revealed that the conversion of HMF to BHMF was the rate-determining step.Remarkably,the characterizations and density functional theory(DFT)calculations further revealed the lower electron density of Ru NPs in Ru/Cu Oxcatalyst,resulting in a larger adsorption energy and a smaller free energy difference for the formation of alcohols.The present findings offered a new pathway for biomass-derived diol production through CMF as a potential source. 展开更多
关键词 2 5-Bis(hydroxymethyl)furan Hydrolysis Hydrogenation biomass conversion Heterogeneous catalysis
下载PDF
Development of monitoring and assessment of forest biomass and carbon storage in China 被引量:1
10
作者 Wei-Sheng Zeng 《Forest Ecosystems》 SCIE CAS CSCD 2015年第1期1-10,共10页
Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomas... Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomass and carbon storage in China is important for promoting the evaluation of forest carbon sequestration capacity of China.The author conducts a systematic analysis of domestic publications addressing"monitoring and assessment of forest biomass and carbon storage"in order to understand the development trends,describes the brief history through three stages,and gives the situation of new development.Towards the end of the 20th century,a large number of papers on biomass and productivity of the major forest types in China had been published,covering the exploration and efforts of more than 20 years,while investigations into assessment of forest carbon storage had barely begun.Based on the data of the 7th and 8th National Forest Inventories,forest biomass and carbon storage of the entire country were assessed using individual tree biomass models and carbon conversion factors of major tree species,both previously published and newly developed.Accompanying the implementation of the 8th National Forest Inventory,a program of individual tree biomass modeling for major tree species in China was carried out simultaneously.By means of thematic research on classification of modeling populations,as well as procedures for collecting samples and methodology for biomass modeling,two technical regulations on sample collection and model construction were published as ministerial standards for application.Requests for approval of individual tree biomass models and carbon accounting parameters of major tree species have been issued for approval as ministerial standards.With the improvement of biomass models and carbon accounting parameters,thematic assessment of forest biomass and carbon storage will be gradually changed into a general monitoring of forest biomass and carbon storage,in order to realize their dynamic monitoring in national forest inventories.Strengthening the analysis and assessment of spatial distribution patterns of forest biomass and carbon storage through application of remote sensing techniques and geostatistical approaches will also be one of the major directions of development in the near future. 展开更多
关键词 biomass models Carbon accounting parameters biomass conversion factor Root-to-shoot ratio Carbon storage
下载PDF
Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles
11
作者 Zhimei Li Kuan Tian +3 位作者 Keping Wang Zhengyi Li Haoli Qin Hu Li 《Journal of Renewable Materials》 EI 2023年第11期3847-3865,共19页
Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO_(2)-emitting fossil-fuel technologies.Herein,a core–shell magnetic biocarbon catalyst functi... Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO_(2)-emitting fossil-fuel technologies.Herein,a core–shell magnetic biocarbon catalyst functionalized with sulfonic acid(Fe3O4@SiO_(2)@chitosan-SO_(3)H,MBC-SO_(3)H)was prepared to be efficient for the synthesis of various N-substituted pyrroles(up to 99% yield)from bio-based hexanedione and amines under mild conditions.The abundance of Bronsted acid sites in the MBC-SO_(3)H ensured smooth condensation of 2,5-hexanedione with a variety of amines to produce N-substituted pyrroles.The reaction was illustrated to follow the conventional Pall-Knorr coupling pathway,which includes three cascade reaction steps:amination,loop closure and dehydration.The prepared MBC-SO_(3)H catalyst could effectively activate 2,5-hexanedione,thus weakening the dependence of the overall conversion process on the amine nucleophilicity.The influence of different factors(e.g.,reaction temperature,time,amount of catalyst,molar ratio of substrates,and solvent type)on the reaction activity and selectivity were investigated comprehensively.Moreover,the MBC-SO_(3)H possessed excellent thermochemical stability,reusability,and easy separation due to the presence of magnetic core-shell structures.Notably,there was no activity attenuation after 5 consecutive catalytic experiments.This work demonstrates a wide range of potential applications of developing functionalized core-shell magnetic materials to construct bioactive backbones from biomass-based platform molecules. 展开更多
关键词 Magnetic materials biomass conversion heterogeneous catalysis sustainable chemistry
下载PDF
Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization 被引量:1
12
作者 Baoyu Wang Jinshu Huang +3 位作者 Hongguo Wu Ximing Yan Yuhe Liao Hu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期16-25,共10页
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst... Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin. 展开更多
关键词 biomass conversion Heterogeneous catalysis LIGNIN Dual-atom catalyst Selective C-ocleavage
下载PDF
Selective Hydrodeoxygenation of Lignin-Derived Vanillin via Hetero-Structured High-Entropy Alloy/Oxide Catalysts
13
作者 Yan Sun Kaili Liang +9 位作者 Ren Tu Xudong Fan Charles Q.Jia Zhiwen Jia Yingnan Li Hui Yang Enchen Jiang Hanwen Liu Yonggang Yao Xiwei Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期202-210,共9页
The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sit... The chemoselective hydrodeoxygenation of natural lignocellulosic materials plays a crucial role in converting biomass into value-added chemicals.Yet their complex molecular structures often require multiple active sites synergy for effective activation and achieving high chemoselectivity.Herein,it is reported that a high-entropy alloy(HEA)on high-entropy oxide(HEO)hetero-structured catalyst for highly active,chemoselective,and robust vanillin hydrodeoxygenation.The heterogenous HEA/HEO catalysts were prepared by thermal reduction of senary HEOs(NiZnCuFeAlZrO_(x)),where exsolvable metals(e.g.,Ni,Zn,Cu)in situ emerged and formed randomly dispersed HEA nanoparticles anchoring on the HEO matrix.This catalyst exhibits excellent catalytic performance:100%conversion of vanillin and 95%selectivity toward high-value 2-methyl-4 methoxy phenol at low temperature of 120℃,which were attributed to the synergistic effect among HEO matrix(with abundant oxygen vacancies),anchored HEA nanoparticles(having excellent hydrogenolysis capability),and their intimate hetero-interfaces(showing strong electron transferring effect).Therefore,our work reported the successful construction of HEA/HEO heterogeneous catalysts and their superior multifunctionality in biomass conversion,which could shed light on catalyst design for many important reactions that are complex and require multifunctional active sites. 展开更多
关键词 biomass conversion heterogeneous catalysts high-entropy oxide high-entropy alloys lignin pyrolysis
下载PDF
Fuel the Future:QIBEBT’s Clean Energy Breakthroughs
14
作者 YANG Xutong CHEN Tianju +6 位作者 CHEN Song ZHAO Yuzhong PANG Shuping LI Xiaojin JIANG Heqing WU Tianyuan LV Xuefeng 《Bulletin of the Chinese Academy of Sciences》 2024年第4期267-278,共12页
The Qingdao Institute of Bioenergy and Bioprocess Technology(QIBEBT),under the Chinese Academy of Sciences,has emerged as a leading force in clean energy research since its establishment in 2006.This article highlight... The Qingdao Institute of Bioenergy and Bioprocess Technology(QIBEBT),under the Chinese Academy of Sciences,has emerged as a leading force in clean energy research since its establishment in 2006.This article highlights QIBEBT’s significant contributions across various clean energy domains,including biomass conversion,solar energy,hydrogen production,and energy storage.Key innovations include the hydrogenation processes for biofuel production,high-solid state anaerobic digestion for biogas,perovskite solar cell technology,proton exchange membrane fuel cell systems,and deep-sea solid-state energy storage solutions.These advancements demonstrate QIBEBT’s commitment to addressing global energy challenges and supporting China’s transition to a sustainable energy future.The institute’s success is underpinned by its integrated approach,combining fundamental research with industrial applications and fostering collaborations between academia and industry. 展开更多
关键词 technology transfer biomass conversion solar energy hydrogen production energy storage
下载PDF
基于等转化率法的芒草和玉米秸秆热解特性及动力学研究 被引量:10
15
作者 姚灿 田红 +2 位作者 覃静萍 刘正伟 胡章茂 《林产化学与工业》 EI CAS CSCD 北大核心 2018年第1期93-100,共8页
利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失... 利用热重分析仪对芒草和玉米秸秆在不同升温速率(5、10、20和40℃/min)下的热解特性进行了研究,并采用Kissinger-Akahira-Sunose(KAS)、Starink和Ozawa等转化率法研究了其热解动力学特性。结果表明:芒草和玉米秸秆热解过程可分为干燥失水、过渡、主热解和炭化4个阶段;随着升温速率增加,热解各阶段均向高温侧移动,失重率增加,表明升温速率增加可促进热解反应的进行。动力学计算结果表明:3种方法拟合的相关系数均大于0.9,且芒草的相关系数大于玉米秸秆;芒草的活化能,KAS和Starink法计算得到的结果很接近,Ozawa法较低;而玉米秸秆的活化能,Ozawa法得到的最高,Starink法居中,KAS法最低。在整个热解过程中,3种方法求得的芒草的活化能随转化率升高波动明显,表明芒草热解过程发生了一系列复杂的化学反应;转化率为0.1~0.3、0.3~0.7及0.7~0.8时,分别对应半纤维素、纤维素及木质素的主热解阶段,这表明芒草三组分热解难易程度为木质素>纤维素>半纤维素。而玉米秸秆则不太一样,转化率为0.1~0.4时,玉米秸秆活化能急剧增加;转化率为0.4~0.8时,玉米秸秆活化能缓慢下降直至平稳。 展开更多
关键词 生物质 热解动力学 等转化率法 热解特性
下载PDF
Recent advances in glycerol valorization via electrooxidation:Catalyst,mechanism and device 被引量:4
16
作者 Jianxiang Wu Xuejing Yang Ming Gong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第12期2966-2986,共21页
Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its applicatio... Glycerol is one of the most important biomass-based platform molecules,massively produced as a by-product in the biodiesel industry.Its high purification cost from the crude glycerol raw material limits its application and demands new strategies for valorization.Compared to the conventional thermocatalytic strategies,the electrocatalytic strategies can not only enable the selective conversion at mild conditions but also pair up the cathodic reactions for the co-production with higher efficiencies.In this review,we summarize the recent advances of catalyst designs and mechanistic understandings for the electrocatalytic glycerol oxidation(GOR),and aim to provide an overview of the GOR process and the intrinsic structural-activity correlation for inspiring future work in this field.The review is dissected into three sections.We will first introduce the recent efforts of designing more efficient and selective catalysts for GOR,especially toward the production of value-added products.Then,we will summarize the current understandings about the reaction network based on the ex-situ and in-situ spectroscopic studies as well as the theoretical works.Lastly,we will select some representative examples of creating real electrochemical devices for the valorization of glycerol.By summarizing these previous efforts,we will provide our vision of future directions in the field of GOR toward real applications. 展开更多
关键词 Glycerol electrooxidation Reaction mechanism Design of electrocatalyst Real application biomass conversion
下载PDF
Straightforward synthesis of beta zeolite encapsulated Pt nanoparticles for the transformation of 5-hydroxymethyl furfural into 2,5-furandicarboxylic acid 被引量:3
17
作者 Xiaoling Liu Lei Chen +3 位作者 Hongzhong Xu Shi Jiang Yu Zhou Jun Wang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第6期994-1003,共10页
Encapsulating noble metal nanoparticles(NPs)within the zeolite framework enhances the stability and accessibility of active sites;however,direct synthesis remains a challenge because of the easy precipitation of noble... Encapsulating noble metal nanoparticles(NPs)within the zeolite framework enhances the stability and accessibility of active sites;however,direct synthesis remains a challenge because of the easy precipitation of noble metal species under strong alkali crystallization conditions.Herein,beta zeolite-encapsulated Pt NPs(Pt@Beta)were synthesized via a hydrothermal approach involving an unusual acid hydrolysis preaging step.The ligand—(3-mercaptopropyl)trimethoxysilane—and Pt precursor were cohydrolyzed and cocondensed with a silica source in an initially weak acidic environment to prevent colloidal precipitation by enhancing the interaction between the Pt and silica species.Thus,the resultant 0.2%Pt@Beta was highly active in the transformation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid(FDCA)under atmospheric O2 conditions by using water as the solvent while stably evincing a high yield(90%)associated with a large turnover number of 176.The excellent catalysis behavior is attributable to the enhanced stability that inhibits Pt leaching and strengthens the intermediates that accelerate the rate-determining step for the oxidation of 5-formyl-2-furan carboxylic acid into FDCA. 展开更多
关键词 Hydrothermal synthesis ZEOLITE Noble metal nanoparticles Heterogeneous catalysis biomass conversion
下载PDF
生物质热解过程两种动力学分析方法的比较 被引量:10
18
作者 谢华清 于庆波 +1 位作者 秦勤 张海涛 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第6期845-848,共4页
利用Coats-Redfern法和Starink等转化率法对松球和玉米芯两种生物质的热解过程进行动力学分析.Coats-Redfern法需事先假设或筛选动力学模型,采用Malek法对动力学模型进行了筛选,松球、玉米芯热解过程分别符合D3,R2模型.Starink等转化率... 利用Coats-Redfern法和Starink等转化率法对松球和玉米芯两种生物质的热解过程进行动力学分析.Coats-Redfern法需事先假设或筛选动力学模型,采用Malek法对动力学模型进行了筛选,松球、玉米芯热解过程分别符合D3,R2模型.Starink等转化率法不需模型假设即可进行动力学求解,求得的活化能比由Coats-Redfern法求得的活化能高.由Starink等转化率法求得玉米芯的活化能在整个热解过程中变化较小,可以用单一机理函数描述,而松球的活化能在整个热解过程中变化较大,不可以用单一机理函数描述. 展开更多
关键词 生物质 热解 动力学 Coats-Redfern法 等转化率法
下载PDF
Stabilization of heterogeneous hydrogenation catalysts for the aqueous-phase reactions of renewable feedstocks 被引量:2
19
作者 Xiaoyan Liu Guojun Lan +3 位作者 Zhenqing Li Lihua Qian Jian Liu Ying Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第5期694-709,共16页
The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-d... The conversion of biomass-derived products to fine chemicals and fuels is extremely important for the utilization of renewable energy sources.Water is not only a by-product formed during the hydrogenation of biomass-derived oxygenated chemicals,but also an inexpensive and nontoxic solvent.The instability of solid catalysts for aqueous-phase reactions caused by metal leaching and the collapse of a catalyst support represents a significant challenge.In this work,various catalyst stabilization strategies including the nanospace and interfacial confinements that prevent sintering and leaching of metal nanoparticles as well as modification methods for increasing the support stability are summarized and systemically discussed.In addition,feasible approaches to designing stable and efficient heterogeneous catalysts for aqueous-phase reactions are proposed. 展开更多
关键词 biomass conversion Heterogeneous catalysts Metal catalysts Aqueous-phase reactions Catalyst stability
下载PDF
Facet effect on the reconstructed Cu-catalyzed electrochemical hydrogenation of 5-hydroxymethylfurfural(HMF) towards 2,5-bis(hydroxymethy)furan (BHMF) 被引量:2
20
作者 Mengxia Li Tianxi Zheng +7 位作者 Dongfei Lu Shiwei Dai Xin Chen Xinchen Pan Dibo Dong Rengui Weng Gang Xu Fanan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期101-111,共11页
The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide poten... The electrochemical hydrogenation of HMF to BHMF is an elegant alternative to the conventio nal thermocatalytic route for the production of high-value-added chemicals from biomass resources.In virtue of the wide potential window with promising Faradic efficiency(FE) towards BHMF,Cu-based electrode has been in the center of investigation.However,its structure-activity relationship remains ambiguous and its intrinsic catalytic activity is still unsatisfactory.In this work,we develop a two-step oxidation-reduction strategy to reconstruct the surface atom arrangement of the Cu foam(CF).By combination of multiple quasi-situ/in-situ techniques and density functional theory(DFT) calculation,the critical factor that governs the reaction is demonstrated to be facet effect of the metallic Cu crystal:Cu(110) facet accounts for the most favorable surface with enhanced chemisorption with reactants and selective production of BHMF,while Cu(100) facet might trigger the accumulation of the by-product 5,5'-bis(hydroxy methy)hydrofurion(BHH).With the optimized composition of the facets on the reconstructed Cu(OH)_(2)-ER/CF,the performance could be noticeably enhanced with a BHMF FE of 92.3% and HMF conversion of 98.5% at a potential of -0.15 V versus reversible hydrogen electrode(vs.RHE) in 0.1 M KOH solution.This work sheds light on the incomplete mechanistic puzzle for Cu-catalyzed electrochemical hydrogenation of HMF to BHMF,and provides a theoretical foundation for further precise design of highly efficient catalytic electrodes. 展开更多
关键词 Electrochemical hydrogenation biomass conversion 5-HYDROXYMETHYLFURFURAL Cu electrode Facet effect
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部