期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Are allometric model parameters of aboveground biomass for trees phylogenetically constrained?
1
作者 Xing-Zhao Huang Fang-Bing Li +2 位作者 Zi-Xuan Wang Yi Jin Hong Qian 《Plant Diversity》 SCIE CAS CSCD 2023年第2期229-233,共5页
Knowledge of which biological and functional traits have,or lack,phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities.Allometric ... Knowledge of which biological and functional traits have,or lack,phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities.Allometric biomass models reflecting tree growth characteristics are commonly used to predict forest biomass.However,few studies have examined whether model parameters are constrained by phylogeny.Here,we use a comprehensive database(including 276 tree species) compiled from 894 allometric biomass models published in 302 articles to examine whether parameters a and b of the model W=aD~b(where W stands for aboveground biomass,D is diameter at breast height) exhibit phylogenetic signal for all tree species as a whole and for different groups of tree species.For either model parameter,we relate difference in model parameter between different tree species to phylogenetic distance and to environmental distance between pairwise sites.Our study shows that neither model parameter exhibits phylogenetic signals(Pagel's λ and Blomberg's K both approach zero).This is the case regardless of whether all tree species in our data set were analyzed as a whole or tree species in different taxonomic groups(gymnosperm and angiosperm),leaf duration groups(evergreen and deciduous),or ecological groups(tropical,temperate and boreal) were analyzed separately.Our study also shows that difference in each parameter of the allometric biomass model is not significantly related to phylogenetic and environmental distances between tree species in different sites. 展开更多
关键词 Allometric biomass model Pagel'sλ Blomberg's K Phylogenetic constraint
下载PDF
Individual tree segmentation and biomass estimation based on UAV Digital aerial photograph
2
作者 SUN Zhao WANG Yi-fu +6 位作者 DING Zhi-dan LIANG Rui-ting XIE Yun-hong LI Rui LI Hao-wei PAN Lei SUN Yu-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第3期724-737,共14页
Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging... Digital aerial photograph(DAP)data is processed based on Structure from Motion(Sf M)algorithm and regional net adjustment method to generate digital surface discrete point clouds similar to Light Detection and Ranging(LiDAR)and digital orthophoto mosaic(DOM)similar to optical remote sensing image.In this study,we obtained highresolution images of mature forests of Chinese fir by unmanned aerial vehicle(UAV)flying through crossroute flight,and then reconstructed the threedimensional point clouds in the UAV aerial area by SfM technique.The point cloud segmentation(PCS)algorithm was used for the individual tree segmentation,and the F-score of the three sample plots were 0.91,0.94,and 0.94,respectively.Individual tree biomass modeling was conducted using 155 mature Chinese fir forests which were correctly segmented.The relative root mean squared error(rRMSE)values of random forest(RF),bagged tree(BT)and support vector regression(SVR)were 34.48%,35.74%and 40.93%,respectively.Our study demonstrated that DAP point clouds had great potential to extract forest vertical parameters and could be applied successfully in individual tree segmentation and individual tree biomass modeling. 展开更多
关键词 UAV images Structure from motion DAP point clouds Individual tree segmentation Individual tree biomass models
下载PDF
Developing individual tree-based models for estimating aboveground biomass of five key coniferous species in China 被引量:5
3
作者 Weisheng Zeng Liyong Fu +3 位作者 Ming Xu Xuejun Wang Zhenxiong Chen Shunbin Yao 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1251-1261,共11页
Estimating individual tree biomass is critical to forest carbon accounting and ecosystem service modeling.In this study,we developed one-(tree diameter only) and two-variable(tree diameter and height) biomass equa... Estimating individual tree biomass is critical to forest carbon accounting and ecosystem service modeling.In this study,we developed one-(tree diameter only) and two-variable(tree diameter and height) biomass equations,biomass conversion factor(BCF) models,and an integrated simultaneous equation system(ISES) to estimate the aboveground biomass for five conifer species in China,i.e.,Cunninghamia lanceolata(Lamb.) Hook.,Pinus massoniana Lamb.,P.yunnanensis Faranch,P.tabulaeformis Carr.and P.elliottii Engelm.,based on the field measurement data of aboveground biomass and stem volumes from 1055 destructive sample trees across the country.We found that all three methods,including the one-and two-variable equations,could adequately estimate aboveground biomass with a mean prediction error less than 5%,except for Pinus yunnanensis which yielded an error of about 6%.The BCF method was slightly poorer than the biomass equation and the ISES methods.The average coefficients of determination(R^2) were 0.944,0.938 and 0.943 and the mean prediction errors were 4.26,4.49 and 4.29% for the biomass equation method,the BCF method and the ISES method,respectively.The ISES method was the best approach for estimating aboveground biomass,which not only had high accuracy but also could estimate stocking volumes simultaneously that was compatible with aboveground biomass.In addition,we found that it is possible to develop a species-invariant one-variable allometric model for estimating aboveground biomass of all the five coniferous species.The model had an exponent parameter of 7/3 and the intercept parameter a_0 could be estimated indirectly from stem basic density(a_0= 0.294 q). 展开更多
关键词 biomass models Allometric equations biomass conversion factor Error-in-variable simultaneous equations
下载PDF
Variations in the biomass of Eucalyptus plantations at a regional scale in Southern China 被引量:2
4
作者 Quanyi Qiu Guoliang Yun +6 位作者 Shudi Zuo Jing Yan Lizhong Hua Yin Ren Jianfeng Tang Yaying Li Qi Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1263-1276,共14页
We quantified deviations in regional forest biomass from simple extrapolation of plot data by the biomass expansion factor method(BEF) versus estimates obtained from a local biomass model,based on large-scale empiri... We quantified deviations in regional forest biomass from simple extrapolation of plot data by the biomass expansion factor method(BEF) versus estimates obtained from a local biomass model,based on large-scale empirical field inventory sampling data.The sources and relative contributions of deviations between the two models were analyzed by the boosted regression trees method.Relative to the local model,BEF overestimated accumulative biomass by 22.12%.The predominant sources of the total deviation (70.94%) were stand-structure variables.Stand age and diameter at breast height are the major factors.Compared with biotic variables,abiotic variables had a smaller overall contribution (29.06%),with elevation and soil depth being the most important among the examined abiotic factors.Large deviations in regional forest biomass and carbon stock estimates are likely to be obtained with BEF relative to estimates based on local data.To minimize deviations,stand age and elevation should be included in regional forest-biomass estimation. 展开更多
关键词 BEF Boosted regression trees Eucalyptus plantations Local biomass model Regional biomass estimation Biotic versus abiotic factors Uncertainty analysis
下载PDF
Application of site-specific biomass models to quantify spatial distribution of stocks and historical emissions from deforestation in a tropical forest ecosystem 被引量:1
5
作者 Cedric A.Goussanou Sabin Guendehou +1 位作者 Achille E.Assogbadjo Brice Sinsin 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期205-213,共9页
Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon sto... Allometric equations developed for the Lama forest, located in southern Benin, West Africa, were applied to estimate carbon stocks of three vegetation types:undisturbed forest, degraded forest, and fallow. Carbon stock of the undisturbed forest was 2.7 times higher than that in the degraded forest and 3.4 times higher than that in fallow. The structure of the forest suggests that the individual species were generally concentrated in lower diameter classes. Carbon stock was positively correlated to basal area and negatively related to tree density, suggesting that trees in higher diameter classes contributed significantly to the total carbon stock. The study demonstrated that large trees constitute an important component to include in the sampling approach to achieve accurate carbon quantification in forestry. Historical emissions from deforestation that converted more than 30% of the Lama forest into cropland between the years 1946 and 1987 amounted to 260,563.17 tons of carbon per year(t CO2/year) for the biomass pool only. The study explained the application of biomass models and ground truth data to estimate reference carbon stock of forests. 展开更多
关键词 biomass Reference level Site-specific biomass model Spatial distribution Tropical forest ecosystem
下载PDF
Model-based estimation of above-ground biomass in the miombo ecoregion of Zambia 被引量:1
6
作者 James Halperin Valerie LeMay +2 位作者 Emmanuel Chidumayo Louis Verchot Peter Marshall 《Forest Ecosystems》 SCIE CSCD 2016年第4期258-274,共17页
Background:Information on above-ground biomass(AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and internati... Background:Information on above-ground biomass(AGB) is important for managing forest resource use at local levels,land management planning at regional levels,and carbon emissions reporting at national and international levels.In many tropical developing countries,this information may be unreliable or at a scale too coarse for use at local levels.There is a vital need to provide estimates of AGB with quantifiable uncertainty that can facilitate land use management and policy development improvements.Model-based methods provide an efficient framework to estimate AGB.Methods:Using National Forest Inventory(NFI) data for a^1,000,000 ha study area in the miombo ecoregion,Zambia,we estimated AGB using predicted canopy cover,environmental data,disturbance data,and Landsat 8 OLI satellite imagery.We assessed different combinations of these datasets using three models,a semiparametric generalized additive model(GAM) and two nonlinear models(sigmoidal and exponential),employing a genetic algorithm for variable selection that minimized root mean square prediction error(RMSPE),calculated through cross-validation.We compared model fit statistics to a null model as a baseline estimation method.Using bootstrap resampling methods,we calculated 95% confidence intervals for each model and compared results to a simple estimate of mean AGB from the NFI ground plot data.Results:Canopy cover,soil moisture,and vegetation indices were consistently selected as predictor variables.The sigmoidal model and the GAM performed similarly;for both models the RMSPE was -36.8 tonnes per hectare(i.e.,57% of the mean).However,the sigmoidal model was approximately 30% more efficient than the GAM,assessed using bootstrapped variance estimates relative to a null model.After selecting the sigmoidal model,we estimated total AGB for the study area at 64,526,209 tonnes(+/- 477,730),with a confidence interval 20 times more precise than a simple designbased estimate.Conclusions:Our findings demonstrate that NFI data may be combined with freely available satellite imagery and soils data to estimate total AGB with quantifiable uncertainty,while also providing spatially explicit AGB maps useful for management,planning,and reporting purposes. 展开更多
关键词 National Forest Inventory Above-ground biomass Miombo REDD+ Generalized additive model Nonlinear model Landsat 8 OLI
下载PDF
Development of monitoring and assessment of forest biomass and carbon storage in China
7
作者 Wei-Sheng Zeng 《Forest Ecosystems》 SCIE CAS CSCD 2015年第1期1-10,共10页
Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomas... Addressing climate change has become a common issue around the world in the 21st century and equally an important mission in Chinese forestry.Understanding the development of monitoring and assessment of forest biomass and carbon storage in China is important for promoting the evaluation of forest carbon sequestration capacity of China.The author conducts a systematic analysis of domestic publications addressing"monitoring and assessment of forest biomass and carbon storage"in order to understand the development trends,describes the brief history through three stages,and gives the situation of new development.Towards the end of the 20th century,a large number of papers on biomass and productivity of the major forest types in China had been published,covering the exploration and efforts of more than 20 years,while investigations into assessment of forest carbon storage had barely begun.Based on the data of the 7th and 8th National Forest Inventories,forest biomass and carbon storage of the entire country were assessed using individual tree biomass models and carbon conversion factors of major tree species,both previously published and newly developed.Accompanying the implementation of the 8th National Forest Inventory,a program of individual tree biomass modeling for major tree species in China was carried out simultaneously.By means of thematic research on classification of modeling populations,as well as procedures for collecting samples and methodology for biomass modeling,two technical regulations on sample collection and model construction were published as ministerial standards for application.Requests for approval of individual tree biomass models and carbon accounting parameters of major tree species have been issued for approval as ministerial standards.With the improvement of biomass models and carbon accounting parameters,thematic assessment of forest biomass and carbon storage will be gradually changed into a general monitoring of forest biomass and carbon storage,in order to realize their dynamic monitoring in national forest inventories.Strengthening the analysis and assessment of spatial distribution patterns of forest biomass and carbon storage through application of remote sensing techniques and geostatistical approaches will also be one of the major directions of development in the near future. 展开更多
关键词 biomass models Carbon accounting parameters biomass conversion factor Root-to-shoot ratio Carbon storage
下载PDF
Net Primary Productivity and Management Potential of Artificial Pinus tabulaeformis Forest in Shanxi Province
8
作者 Lanying FAN Jianguo CHANG +1 位作者 Yaqin CUI Tuohuan SUN 《Asian Agricultural Research》 2018年第3期5-9,14,共6页
The dynamic variation of net primary productivity of artificial Pinus tabulaeformis forest was studied in Shanxi Province,and potential productivity of artificial forest was predicted to provide reference for improvin... The dynamic variation of net primary productivity of artificial Pinus tabulaeformis forest was studied in Shanxi Province,and potential productivity of artificial forest was predicted to provide reference for improving quality of regional forest stand. The regression equation was established by using the stratification and harvesting method with the relative growth model. Cumulative method and Thornthwaite Memorial model was used to estimate the actual and potential productivity of the forest. The productivity of P. tabulaeformis forest increased with the increase of age and started decrease with the mature period. The actual productivity of P. tabulaeformis forest was 4. 462 t/( ha·year); the contribution rate of trees was 72. 17% of the total productivity,and with the increase of age,the total biomass increased but productivity decreased at late near-mature forest; the contribution rate of herb layer was 21. 16% in the young forest stage,and then decreased gradually. On the contrary,the contribution rate of shrub layer increased gradually,and the contribution rate of the grassland was more than that of the herb layer,so as the key period of structural management; the average potential productivity of forest was 8. 422 t/( ha·year),and the potential space of P. tabulaeformis was at least 32% in Shanxi Province. In conclusion,the potential space of productivity of P. tabulaeformis was at least 32%,and the primary limiting factor of P. tabulaeformis forest productivity in Shanxi Province was rainfall. 展开更多
关键词 Pinus tabuliformis Individual tree biomass model Net primary productivity Potential productivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部