Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline ...Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.展开更多
The effect of the emulsifier formula on the stability of castor oil-water system was studied through compounding three groups of emulsifiers from the aspects of stability factor of absorbance,centrifuge stability,demu...The effect of the emulsifier formula on the stability of castor oil-water system was studied through compounding three groups of emulsifiers from the aspects of stability factor of absorbance,centrifuge stability,demulsification time in quiescence,appearance of the droplets,and viscosity.The best emulsifier formula for castor biomass oil was the composite formula of sorbitan monooleate and polyoxyethylene sorbitan monostearate.Correlation exists between the stability of emulsion and the viscosity/particle size of the droplets,with better stability in the case of greater viscosity or narrower distribution of particle size in the emulsion of castor oil-water system.Methanol added to the castor oil-water system may decrease the viscosity of the emulsion.Comparing the castor oil-water emulsion with methanol-castor oil-water emulsion,the optimal hydrophilic and lipophilic balance(HLB)value based on castor oil-water system was acquired between 6.6 and 7.5,while the optimal HLB value based on the methanol-castor oil-water system was between 5.5 and 6.0.The optimal HLB value of methanolcastor oil-water system gradually moved to that of castor oil-water emulsion with adding more water.展开更多
Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biom...Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.展开更多
Weed incidence and biomass in tree crop plantations are mainly influenced by environmental, farm management practices and cropping systems. Manipulation of intercropping systems to improve weed management in coffee in...Weed incidence and biomass in tree crop plantations are mainly influenced by environmental, farm management practices and cropping systems. Manipulation of intercropping systems to improve weed management in coffee intercropped with oil palm requires a better understanding of spatial and temporal dynamics of weeds. To evaluate the effect of weed incidence and biomass in coffee intercropped with oil palm in avenue and hollow square arrangement, a study was carried out in Cocoa Research Institute of Nigeria (CRIN) in two locations. The locations are Idi-Ayunre (7°25'N, 3°24'E) (an alfisol) and Uhonmora (6°5'N, 5°50'E) (ultisol) in rainforest and derived savannah parts of Nigeria respectively. The experiment had three treatments comprising coffee sole (control), coffee with oil palm (Hollow square) arrangement and coffee with oil palm (Avenue) planting. Coffee was planted 3.0 m apart while oil palm was planted 9 m apart. Equal size of land area was used for coffee in each treatment. The experimental design was Randomized Complete Block (RCBD) with three replicates. Data on vegetative growth of coffee, weed incidence and biomass were taken at three-monthly intervals. The result showed that coffee/oil palm (Hollow Square) had the least weed incidence and biomass closely followed by coffee/oil palm (Avenue) planting. The control had the highest weed biomass which was significantly different from Hollow square and Avenue planting at P ≤ 0.05. The morphological parameters on coffee followed the same pattern but Hollow square arrangement was significantly higher than Avenue and control at P ≤ 0.05.展开更多
The green algae Botryococcus braunii is widely recognized as a source of oil, including hydrocarbons. However, the slow rate of growth B. braunii hampers its commercial development. This stu- dy addresses this by exam...The green algae Botryococcus braunii is widely recognized as a source of oil, including hydrocarbons. However, the slow rate of growth B. braunii hampers its commercial development. This stu- dy addresses this by examining the effects of three growth media on biomass and oil production in two B. braunii Race B strains, Kossou-4 and Overjuyo-3. Growth of B. braunii strains in BG11 medium resulted in significantly higher growth (2.3 - 4.2 and 2.9 - 6.0 fold increases in Kossou-4 and Overjuyo-3 respectively) compared to the JM and BBM-3N media after 15 days. A similar trend was obtained when biomass was measured indirectly using optical density (OD) and chlorophyll fluo-rescence. Oil production was also significantly higher in BG11 whether measured as oil weight or absorbance (ODs at 680 and 750 nm). However, the presence of extracellular oil was shown to in-crease absorbance values making OD measurements less reliable than dry weight assays. Maximum recovery of oil was recorded when hexane was used as solvent compared to hexane-isopro- panol and heptane. These results suggest that BG11 is the best growth medium for these two strains under the conditions of this experiment.展开更多
In this study olive biomass was pyrolysis in a 400 cm<sup>3</sup> stainless steel reactor. It was externally heated by an electrical furnace in which the temperature is measured by a thermocouple inserted ...In this study olive biomass was pyrolysis in a 400 cm<sup>3</sup> stainless steel reactor. It was externally heated by an electrical furnace in which the temperature is measured by a thermocouple inserted into the bed. The effect of the catalyst ratio to the biomass (5%, 10%, 15%, 20%, 30% and 40%) on the pyrolysis yield was investigated and compared with the uncatalyzed pyrolysis yield product. The bio-oil products yield from the pyrolysis process was found to increase as the catalyst ratio increased. The bio-oil yield from the olive oil-cake, which was 36.1% without the catalyst, reached the maximum value of 39.3% on using activated catalyst at 10% by weight. The gas products yield was found to increase upon using catalyst compared to the non-catalytic pyrolysis. The reduction in the bio-oil yield product was accompanied with a significant reduction in the oxygen content. The pyrolysis oil was examined using chromatographic analysis techniques. The chemical characterization showed that the bio-oil obtained from olive oil cake might be potentially valuable as a fuel and chemical feedstock.展开更多
The phenomenon of droplet impact on an immiscible liquid is encountered in a variety of scenarios in nature and industrial production. Despite exhaustive research, it is not fully clear how the immiscibility of the li...The phenomenon of droplet impact on an immiscible liquid is encountered in a variety of scenarios in nature and industrial production. Despite exhaustive research, it is not fully clear how the immiscibility of the liquid on which a droplet impacts affects the crown evolution. The present work experimentally investigates the evolution kinematics of a crown formed by the normal impact of a camellia oil droplet on an immiscible water layer. Based on discussion of dynamic impact behaviors for three critical Weber numbers(We), the radius of the crown and its average spreading velocity are compared with those of previous theoretical models to discuss their applicability to the immiscible liquid. The evolution kinematics(morphology and velocity) are analyzed by considering the effects of the We and layer thickness. Furthermore,the ability of crown expansion in radial and vertical directions is characterized by a velocity ratio. The results show that our experimental crown radius still follows a square-root function of evolution time, which agrees with the theoretical predictions. The dimensionless average spreading velocity decreases with We and follows a multivariate power law, while the dimensionless average rising velocity remains constant. The velocity ratio is shown to linearly increase with We,demonstrating that the rising movement in crown evolution gradually enhances with We. These results are helpful for further investigation on the droplet impact on an immiscible liquid layer.展开更多
文摘Oil-water separation for produced water (PW) originating from an oil extraction site in South Kuwait was carried out using bleached, esterified cellulosic material from used coffee grounds. Thereafter, earth-alkaline metal ions, specifically calcium ions, of the de-oiled PW were removed by precipitation with sodium carbonate to give access to pure sodium chloride as industrial salt from the remaining PW. While the purity of the precipitated calcium carbonate (CaCO3) depends on the precipitation conditions, CaCO3 of up to 95.48% purity can be obtained, which makes it a salable product. The precipitation of CaCO3 decreases the amount of calcium ions in PW from 11,300 ppm to 84 ppm.
文摘The effect of the emulsifier formula on the stability of castor oil-water system was studied through compounding three groups of emulsifiers from the aspects of stability factor of absorbance,centrifuge stability,demulsification time in quiescence,appearance of the droplets,and viscosity.The best emulsifier formula for castor biomass oil was the composite formula of sorbitan monooleate and polyoxyethylene sorbitan monostearate.Correlation exists between the stability of emulsion and the viscosity/particle size of the droplets,with better stability in the case of greater viscosity or narrower distribution of particle size in the emulsion of castor oil-water system.Methanol added to the castor oil-water system may decrease the viscosity of the emulsion.Comparing the castor oil-water emulsion with methanol-castor oil-water emulsion,the optimal hydrophilic and lipophilic balance(HLB)value based on castor oil-water system was acquired between 6.6 and 7.5,while the optimal HLB value based on the methanol-castor oil-water system was between 5.5 and 6.0.The optimal HLB value of methanolcastor oil-water system gradually moved to that of castor oil-water emulsion with adding more water.
基金the Ministry of Research,Technology and Higher Education,Indonesia,for the financial support of this work through the research grant of "Produk Terapan" Universitas Negeri Semarang,Nomor:084/SP2H/LT/DRPM/IV/2017
文摘Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.
文摘Weed incidence and biomass in tree crop plantations are mainly influenced by environmental, farm management practices and cropping systems. Manipulation of intercropping systems to improve weed management in coffee intercropped with oil palm requires a better understanding of spatial and temporal dynamics of weeds. To evaluate the effect of weed incidence and biomass in coffee intercropped with oil palm in avenue and hollow square arrangement, a study was carried out in Cocoa Research Institute of Nigeria (CRIN) in two locations. The locations are Idi-Ayunre (7°25'N, 3°24'E) (an alfisol) and Uhonmora (6°5'N, 5°50'E) (ultisol) in rainforest and derived savannah parts of Nigeria respectively. The experiment had three treatments comprising coffee sole (control), coffee with oil palm (Hollow square) arrangement and coffee with oil palm (Avenue) planting. Coffee was planted 3.0 m apart while oil palm was planted 9 m apart. Equal size of land area was used for coffee in each treatment. The experimental design was Randomized Complete Block (RCBD) with three replicates. Data on vegetative growth of coffee, weed incidence and biomass were taken at three-monthly intervals. The result showed that coffee/oil palm (Hollow Square) had the least weed incidence and biomass closely followed by coffee/oil palm (Avenue) planting. The control had the highest weed biomass which was significantly different from Hollow square and Avenue planting at P ≤ 0.05. The morphological parameters on coffee followed the same pattern but Hollow square arrangement was significantly higher than Avenue and control at P ≤ 0.05.
文摘The green algae Botryococcus braunii is widely recognized as a source of oil, including hydrocarbons. However, the slow rate of growth B. braunii hampers its commercial development. This stu- dy addresses this by examining the effects of three growth media on biomass and oil production in two B. braunii Race B strains, Kossou-4 and Overjuyo-3. Growth of B. braunii strains in BG11 medium resulted in significantly higher growth (2.3 - 4.2 and 2.9 - 6.0 fold increases in Kossou-4 and Overjuyo-3 respectively) compared to the JM and BBM-3N media after 15 days. A similar trend was obtained when biomass was measured indirectly using optical density (OD) and chlorophyll fluo-rescence. Oil production was also significantly higher in BG11 whether measured as oil weight or absorbance (ODs at 680 and 750 nm). However, the presence of extracellular oil was shown to in-crease absorbance values making OD measurements less reliable than dry weight assays. Maximum recovery of oil was recorded when hexane was used as solvent compared to hexane-isopro- panol and heptane. These results suggest that BG11 is the best growth medium for these two strains under the conditions of this experiment.
文摘In this study olive biomass was pyrolysis in a 400 cm<sup>3</sup> stainless steel reactor. It was externally heated by an electrical furnace in which the temperature is measured by a thermocouple inserted into the bed. The effect of the catalyst ratio to the biomass (5%, 10%, 15%, 20%, 30% and 40%) on the pyrolysis yield was investigated and compared with the uncatalyzed pyrolysis yield product. The bio-oil products yield from the pyrolysis process was found to increase as the catalyst ratio increased. The bio-oil yield from the olive oil-cake, which was 36.1% without the catalyst, reached the maximum value of 39.3% on using activated catalyst at 10% by weight. The gas products yield was found to increase upon using catalyst compared to the non-catalytic pyrolysis. The reduction in the bio-oil yield product was accompanied with a significant reduction in the oxygen content. The pyrolysis oil was examined using chromatographic analysis techniques. The chemical characterization showed that the bio-oil obtained from olive oil cake might be potentially valuable as a fuel and chemical feedstock.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant No. LY15E060007)Innovation Ability Promotion of Science&Technology SMEs of Shandong Province,China(Grant No. 2021TSGC1339)。
文摘The phenomenon of droplet impact on an immiscible liquid is encountered in a variety of scenarios in nature and industrial production. Despite exhaustive research, it is not fully clear how the immiscibility of the liquid on which a droplet impacts affects the crown evolution. The present work experimentally investigates the evolution kinematics of a crown formed by the normal impact of a camellia oil droplet on an immiscible water layer. Based on discussion of dynamic impact behaviors for three critical Weber numbers(We), the radius of the crown and its average spreading velocity are compared with those of previous theoretical models to discuss their applicability to the immiscible liquid. The evolution kinematics(morphology and velocity) are analyzed by considering the effects of the We and layer thickness. Furthermore,the ability of crown expansion in radial and vertical directions is characterized by a velocity ratio. The results show that our experimental crown radius still follows a square-root function of evolution time, which agrees with the theoretical predictions. The dimensionless average spreading velocity decreases with We and follows a multivariate power law, while the dimensionless average rising velocity remains constant. The velocity ratio is shown to linearly increase with We,demonstrating that the rising movement in crown evolution gradually enhances with We. These results are helpful for further investigation on the droplet impact on an immiscible liquid layer.