期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Regulation of different light conditions for efficient biomass production and protein accumulation of Spirulina platensis
1
作者 Yufei ZHANG Xianjun LI +9 位作者 Yuhui LI Shiqi LIU Yanrui CHEN Miao JIA Xin WANG Lu ZHANG Qiping GAO Liang ZHANG Daoyong YU Baosheng GE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期174-186,共13页
Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.I... Light plays an important role in the photosynthesis and metabolic process of microalgae.However,how different light conditions regulate the biomass production and protein accumulation of microalgae is mostly unknown.In this study,the influence of different light conditions,including light colors,densities,and light:dark cycles on the cell growth and biochemical composition of Spirulina platensis was symmetrically characterized.Under different colored lights,S.platensis all shows an increase trend within the increased light intensity ranges;however,each showing different optimal light intensities.At the same light intensity,different colored lights show different growth rate of S.platensis following the sequence of red>white>green>yellow>blue.The maximum growth rate and protein accumulation were determined as 21.88 and 5.10 mg/(L·d)when illuminated under red LED.The energy efficiency of different light sources was calculated and ranked as red>white>blue≈green>yellow.Transcriptomic analysis suggests that red light can promote cell growth and protein accumulation by upregulating genes related to photosynthesis,carbon fixation,and C-N metabolism pathways.This study provides a conducive and efficient way to promote biomass production and protein accumulation of S.platensis by regulating light conditions. 展开更多
关键词 MICROALGAE light emitting diode protein accumulation biomass production transcriptomic analysis
下载PDF
Water yield and biomass production for on a eucalypt-dominated Mediterranean catchment under different climate scenarios
2
作者 Joao Rocha Ana Quintela +2 位作者 Dalila Serpa Jan Jacob Keizer Sérgio Fabres 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第5期1263-1278,共16页
Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,es... Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers. 展开更多
关键词 Climate scenarios Forested catchments Forest ecohydrological modelling Eucalypt biomass production SWAT model
下载PDF
Influence of fly ash and sewage sludge application on wheat biomass production,nutrients availability,and soil properties 被引量:8
3
作者 Christos Tsadilas Vasilios Samaras +1 位作者 E.Evangelou Sabry M.Shaheen 《International Journal of Coal Science & Technology》 EI CAS 2014年第2期221-226,共6页
The influence of fly ash(FA)applied alone and/or with sewage sludge(SS)on wheat(Triticum vulgare)grain yield,biomass production and soil properties was studied in a field experiment.The results showed that both FA and... The influence of fly ash(FA)applied alone and/or with sewage sludge(SS)on wheat(Triticum vulgare)grain yield,biomass production and soil properties was studied in a field experiment.The results showed that both FA and SS significantly increased grain yield and plant biomass.FA applied alone increased significantly soil pH and EC while FA applied together with SS did not significantly affect them compared to mono FA treatment.Soil pH and EC values increased with time in FA and FA-SS treatments.SS increased soil organic matter and total N content and SS applied together with FA increased also available soil B.From the plant nutrients tested only tissue N concentration was increased significantly in all treatments compared to control.Copper,Zn,Mn,Ni,and Pb at both available and total concentrations are significantly affected. 展开更多
关键词 Fly ash Sewage sludge By-product of coal combustion Wheat biomass product Soil property
下载PDF
Biomass and dominance of conservative species drive above-ground biomass productivity in a mediterranean-type forest of Chile 被引量:4
4
作者 Ariel Isaías Ayma-Romay Horacio E.Bown 《Forest Ecosystems》 SCIE CSCD 2019年第4期339-351,共13页
Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivi... Background: Forest productivity has a pivotal role in human well-being. Vegetation quantity, niche complementarity, mass-ratio, and soil resources are alternative/complementary ecological mechanisms driving productivity. One challenge in current forest management depends on identifying and manipulating these mechanisms to enhance productivity. This study assessed the extent to which these mechanisms control aboveground biomass productivity(AGBP) of a Chilean mediterranean-type matorral. AGBP measured as tree aboveground biomass changes over a 7-years period, was estimated for twelve 25 m × 25 m plots across a wide range of matorral compositions and structures. Variables related to canopy structure, species and functional diversity, species and functional dominance, soil texture, soil water and soil nitrogen content were measured as surrogates of the four mechanisms proposed. Linear regression models were used to test the hypotheses. A multimodel inference based on the Akaike’s information criterion was used to select the best models explaining AGBP and for identifying the relative importance of each mechanism.Results: Vegetation quantity(tree density) and mass-ratio(relative biomass of Cryptocarya alba, a conservative species) were the strongest drivers increasing AGBP, while niche complementarity(richness species) and soil resources(sand, %) had a smaller effect either decreasing or increasing AGBP, respectively. This study provides the first assessment of alternative mechanisms driving AGBP in mediterranean forests of Chile. There is strong evidence suggesting that the vegetation quantity and mass-ratio mechanisms are key drivers of AGBP, such as in other tropical and temperate forests. However, in contrast with other studies from mediterranean-type forests, our results show a negative effect of species diversity and a small effect of soil resources on AGBP.Conclusion: AGBP in the Chilean matorral depends mainly on the vegetation quantity and mass-ratio mechanisms.The findings of this study have implications for matorral restoration and management for the production of timber and non-timber products and carbon sequestration. 展开更多
关键词 Above-ground biomass productivity Diversity Niche complementarity MASS-RATIO Mediterranean Soil resources
下载PDF
Biomass production of hybrid aspen growing on former farm land in Sweden 被引量:3
5
作者 Tord Johansson 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第2期237-246,共10页
We construct dry weight equations for hybrid aspen growing on former farmland in Sweden. Dry weight equations for fractions of hybrid aspen trees were also made. We estimated biomass production in 24 stands. The stand... We construct dry weight equations for hybrid aspen growing on former farmland in Sweden. Dry weight equations for fractions of hybrid aspen trees were also made. We estimated biomass production in 24 stands. The stands were located in Sweden at latitudes ranging from 55 to 60o N. The mean age was 18 years (range 15-23), the mean stand density 1090 stems·ha-1 (range 378 2374), and the mean diameter at breast height (over bark) 178 mm (range 85 244 mm). Soil types in the hybrid aspen stands were mainly clay (21 stands), tills (2 stands) and other (1 stand). The mean total standing dry weight above stump level (≈ 200 mm) for the hybrid aspen stands was 135±53 t·ha-1 with a range of 42 219 t·ha-1 . In addition to estimating conventional dry weights of trees and tree components, basic density, specific leaf area (SLA), projected leaf area (PLA) and leaf area index (LAI) were estimated and were in agreement with published figures. 展开更多
关键词 basic density biomass production FARMLAND hybrid aspen MAI plantation forestry
下载PDF
Science Letters:Culture of Spirulina platensis in human urine for biomass production and O_2 evolution 被引量:2
6
作者 冯道伦 吴祖成 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2006年第1期34-37,共4页
关键词 Spirulina platensis Human urine biomass production O2 evolution Life support system
下载PDF
The importance of proleptic branch traits in biomass production of poplar in high-density plantations 被引量:1
7
作者 Changjun Ding Ningning Wang +8 位作者 Qinjun Huang Weixi Zhang Juan Huang Suli Yan Boyi Chen Dejun Liang Yufeng Dong Yingbai Shen Xiaohua Su 《Journal of Forestry Research》 SCIE CAS CSCD 2022年第2期463-473,共11页
Branch phenotypic traits determine tree crown architecture,which in turn governs leaf display,light interception,and biomass production.Sylleptic and proleptic branches are the obviously different branch phenotypes in... Branch phenotypic traits determine tree crown architecture,which in turn governs leaf display,light interception,and biomass production.Sylleptic and proleptic branches are the obviously different branch phenotypes in the poplar crown.Many studies have focused on the influence of sylleptic branch numbers(SBN)on biomass production,but the research on the influence of proleptic branch phenotypes was only a few.To explore the relationship between proleptic branch traits and biomass generation production in a high-density poplar plantation,we investigated the branch phenotypic traits of three poplar genotypes,all of which have high survival rates in forests(>95%)and significantly different crown architecture and biomass performance in the high-density plantations(1667 stems ha−1).The plantation site was established in 2007.A terrestrial laser scanner was used to measure branch characteristics such as length,angle of origin and termination,and azi-muth angle.A hierarchical cluster analysis performed on branch characteristics showed that SBN,crown depth,and proleptic branch curvature(PBC)were clustered with bio-mass production and leaf area index(LAI).Among all of the monitored traits,PBC played the second most important role in biomass production after SBN and was significantly correlated with SBN,LAI,and biomass production.The positive correlation between PBC and SBN indicated that a larger PBC was associated with more sylleptic branches within the monitored genotypes planted in the high-density plantation,providing greater leaf area and biomass produc-tion.The results of this study will improve the identification of high-production poplar varieties for cultivation in high-density plantations for biofuel production. 展开更多
关键词 Populous Crown architecture Sylleptic branch Proleptic branch biomass production Terrestrial laser scanner
下载PDF
Linkages between the biomass of Scomber japonicus and net primary production in the southern East China Sea 被引量:2
8
作者 GUAN Wenjiang CHEN Xinjun +1 位作者 GAO Feng LI Gang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第10期43-48,共6页
Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is ... Fish biomass is a critical component of fishery stock assessment and management and it is often estimated from ocean primary production(OPP). However, the relationship between the biomass of a fish stock and OPP is always complicated due to a variety of trophic controls in the ecosystem. In this paper, we examine the quantitative relationship between the biomass of chub mackerel(Scomber japonicus) and net primary production(NPP) in the southern East China Sea(SECS), using catch and effort data from the Chinese mainland large light-purse seine fishery logbook and NPP derived from remote sensing. We further discuss the mechanisms of trophic control in regulating this relationship. The results show a significant non-linear relationship exists between standardized CPUE(Catch-Per-Unit-Effort) and NPP(P〈0.05). This relationship can be described by a convex parabolic curve, where the biomass of chub mackerel increases with NPP to a maximum and then decreases when the NPP exceeds this point. The results imply that the ecosystem in the SECS is subject to complex trophic controls. We speculate that the change in abundance of key species at intermediate trophic levels and/or interspecific competition might contribute to this complex relationship. 展开更多
关键词 southern East China Sea net primary production Scomber japonicus biomass
下载PDF
Comparisons of Yield and Growth Behaviors of Hybrid Rice Under Different Nitrogen Management Methods in Tropical and Subtropical Environments 被引量:10
9
作者 Ibrahim Md PENG Shao-bing +3 位作者 TANG Qi-yuan HUANG Min JIANG Peng ZOU Ying-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2013年第4期621-629,共9页
To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habigan... To compare the grain yield and growth behaviors of hybrid rice, field experiments were conducted in a subtropical environment in Changsha, Hunan Province, China, and in two tropical environments in Gazipur and Habiganj in Bangladesh during 2009 to 2011. Three hybrid rice cultivars were grown under three nitrogen (N) management treatments in each experiment. The results showed that grain yield was significantly affected by locations, N treatments and their interaction but not by cultivars. Changsha produced 8-58% higher grain yields than Bangladesh locations. Sink size (spikelet number per unit land area) was responsible for these yield differences. Larger panicle size (spikelet number per panicle) contributed to greater sink size in Changsha. Aboveground total biomass was greater in Changsha than in Bangladesh locations, whereas harvest index was higher in Bangladesh locations than in Changsha. Crop growth rate (CGR) was greater at Changsha than Bangladesh locations during vegetative phase, while the difference was relatively small and not consistent during the later growth phases. Higher leaf area index and leaf area duration were partly responsible for the greater CGR in Changsha. Real-time N management (RTNM) produced lower grain yields than fixed-time N management in more than half of the experiments. Our study suggested that further improvement in rice yield in the tropical environments similar to those of Bangladesh will depend mainly on the ability to increase panicle size as well as CGR during vegetative phase, and the chlorophyll meter threshold value used in RTNM needs to be modified according to environmental conditions and cultivar characteristics to achieve a desirable grain yield. 展开更多
关键词 crop growth rate biomass production hybrid rice leaf area duration leaf area index real-time nitrogenmanagement
下载PDF
Productivity and nutrient cycling in an agroforestry ecosystem for interplant of pineapple and coconut 被引量:5
10
作者 彭方仁 黄宝龙 《Journal of Forestry Research》 SCIE CAS CSCD 1999年第3期163-167,共5页
In this paper, the biomass productivity and nutrient cycling in an agroforestry system of coconut (Cocus nucifera) interplanted with pineapple (Ananas comosus) had been studied. The result showed that the biomass prod... In this paper, the biomass productivity and nutrient cycling in an agroforestry system of coconut (Cocus nucifera) interplanted with pineapple (Ananas comosus) had been studied. The result showed that the biomass productivity of this ecosystem was 47 460 kg...hm2...a?1, which was 4.3 times as much as that of pure coconut plantation. In the biological cycling of N, P. K elements, the total annual retention was 559.470 kg...hm?2, the annual return was 410.745 kg...hm?2, the annual uptake was 970.475 kg...hm?2, respectively. The average circulation rate in three nutrient elements (N, P, K) was 42.32%, which was 27.53% more than that in pure coconut stands. Coconut interplanted with pineapple was proved to be one of optimum cultural patterns, which had the higher biomass productivity, and better usage efficiency of environment resources in tropical areas. 展开更多
关键词 AGROFORESTRY biomass productivity Nutrient cycling COCONUT PINEAPPLE
下载PDF
Photosynthetic performance of switchgrass and its relation to field productivity:A three-year experimental appraisal in semiarid Loess Plateau 被引量:3
11
作者 GAO Zhi-juan LIU Jin-biao +3 位作者 AN Qin-qin WANG Zhi CHEN Shao-lin XU Bing-cheng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第6期1227-1235,共9页
To reveal photosynthetic characteristics and biomass yield is important for evaluating introduced species adaptation to local environments. A field experiment was conducted over three consecutive years(2011–2013) t... To reveal photosynthetic characteristics and biomass yield is important for evaluating introduced species adaptation to local environments. A field experiment was conducted over three consecutive years(2011–2013) to evaluate photosynthetic characteristics, soil water content, aboveground biomass accumulation, and water use efficiency(WUE) in switchgrass(Panicum virgatum L.) populations exposed to three row spacing(20, 40 and 60 cm) treatments in two growth months(June and August) on the semiarid Loess Plateau of China. Results indicated that net photosynthetic rate(Pn), transpiration rate(Tr), instantaneous water use efficiency(WUEi) and plant height of switchgrass showed an increased trend, but aboveground biomass production and WUE showed an decreased trend with enlarged row spacings over the three years. The maximum daily mean Pn values(17.9, 18.4 and 19.7 μmol CO2 m^(-2) s^(-1)) were observed in 2011, and the highest aboveground biomass production(67 771.8, 6 976.8 and 6 609.2 kg ha^(-1)) were recorded in 2012 for 20, 40 and 60 cm, respectively. A close correlation between tiller numbers and aboveground biomass production(r=0.907) was observed. Pn was positively and significantly correlated with biomass per tiller, but it showed a negative correlation with aboveground biomass production. Our results confirm that wide row spacing is beneficial for single plant development, while narrow row spacing favors biomass production and water use of switchgrass in the region. It also implies that single leaf growth and performance could explain the switchgrass community density differences, while fails to account for the aboveground biomass production. 展开更多
关键词 SWITCHGRASS PHOTOSYNTHESIS row spacing biomass production water use efficiency
下载PDF
Responses of Amygdalus pedunculata Pall.in the sandy and loamy soils to water stress 被引量:3
12
作者 PEI Yanwu HUANG Laiming +1 位作者 SHAO Ming'an ZHANG Yinglong 《Journal of Arid Land》 SCIE CSCD 2020年第5期791-805,共15页
Amygdalus pedunculata Pall.is a major species that is widely planted in afforested soils with different textures in the transitional zone between Mu Us Desert and Loess Plateau,China.However,the responses of A.peduncu... Amygdalus pedunculata Pall.is a major species that is widely planted in afforested soils with different textures in the transitional zone between Mu Us Desert and Loess Plateau,China.However,the responses of A.pedunculata to increasing intensity of water stress in different textural soils are not clear.Here,we conducted a soil column experiment to evaluate the effects of different textures(sandy and loamy)on water consumption,water use efficiency(WUE),biomass accumulation and ecological adaptability of A.pedunculata under increasing water stress,i.e.,90%(±5%)FC(field capacity),75%(±5%)FC,60%(±5%)FC,45%(±5%)FC and 30%(±5%)FC in 2018.A.pedunculata grown in the sandy soil with the lowest(30%FC)and highest(90%FC)water contents had respectively 21.3%-37.0%and 4.4%-20.4%less transpiration than those with other water treatments(45%-75%FC).In contrast,A.pedunculata transpiration in the loamy soil decreased with decreasing water content.The magnitude of decrease in transpiration increased with increasing level of water deficit(45%and 30%FC).Mean daily and cumulative transpirations of the plant were significantly lower in the sandy soil than in the loamy soil under good water condition(90%FC),but the reverse was noted under water deficit treatments(45%and 30%FC).Plant height,stem diameter and total biomass initially increased with decreasing water content from 90%to 75%FC and then declined under severe water deficit conditions(45%and 30%FC)in the sandy soil.However,these plant parameters decreased with decreasing water content in the loamy soil.WUE in the sandy soil was 7.8%-12.3%higher than that in the loamy soil,which initially increased with decreasing water content from 90%to 75%FC and then declined under water deficit conditions(45%and 30%FC).The study showed that plant transpiration,biomass production and WUE responded differentially to increasing intensity of water stress in the sandy and loamy soils.The contrasting responses of A.pedunculata to water stress in different textural soils can guide future revegetation programs in the northern region of Chinese Loess Plateau by considering plant adaptability to varying soil and water conditions. 展开更多
关键词 soil texture water consumption biomass production water use efficiency Loess Plateau
下载PDF
Management of rice straw with relay cropping of Chinese milk vetch improved double-rice cropping system production in southern China 被引量:3
13
作者 ZHOU Xing LIAO Yu-lin +4 位作者 LU Yan-hong Robert MREES CAO Wei-dong NIE Jun LI Mei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期2103-2115,共13页
Improved utilization of rice(Oryza sativa L.)straw and Chinese milk vetch(Astragalus sinicus L.,vetch)has positive effects on rice production.So far,few studies have investigated the productivity of vetch under differ... Improved utilization of rice(Oryza sativa L.)straw and Chinese milk vetch(Astragalus sinicus L.,vetch)has positive effects on rice production.So far,few studies have investigated the productivity of vetch under different residue management practices in double-rice cropping system.The effects of rice straw on the growth and nutrient accumulation of vetch across seven years(2011–2017)and the subsequent effects of rice straw and vetch on two succeeding rice crops in a vetch–rice–rice cropping system,with the vetch established by relay cropping,were examined.The seven-year double-rice experiment consisted of the following treatments:(1)100%chemical fertilizer(F-F100);(2)only vetch without chemical fertilizer(M-Con);(3)80%chemical fertilizer plus vetch plus a low-cutting height(low-retained stubble)with the removal of straw(M-F80);(4)80%chemical fertilizer plus vetch plus a low-cutting height with the retention of straw(M-F80-LR);(5)80%chemical fertilizer plus vetch plus a high-cutting height(high-retained stubble)with the retention of straw(M-F80-HR);and(6)no fertilizer(F-Con).The yields of the two rice crops after vetch were not affected by either the cutting height of stubble with retention of straw or by the management of straw(retention vs.removal)with low-cutting height of stubble.The yields of the two rice crops after vetch were significantly higher for M-F80-HR than for M-F80-LR,but the relative contributions of the high-cutting height and straw retention to the higher rice yield could not be determined in this study.The yield stability of the double-rice grain in M-F80-HR was also increased,as determined by a sustainable yield index.Significant increases in vetch biomass and nutrient uptake were observed in the fertilized treatments during the rice season compared with the unfertilized treatments.In M-F80-HR plots,improvements in the growing environment of the vetch by conserving soil water content were associated with the highest vetch biomass,nutrient uptake,and yield stability of vetch biomass.These increased nutrient inputs partially replaced the demand for chemical fertilizer and stimulated the rice yields.It can be concluded that retaining higher-cutting stubble residues with straw retention could be the best straw management practice for increasing the vetch biomass and nutrient use efficiency,thereby allowing utilization of high-cutting height with retention of straw and vetch to improve the stability of rice productivity in a double-rice cropping system. 展开更多
关键词 double-rice cropping system Chinese milk vetch biomass productivity rice straw sustainable yield index
下载PDF
Bio-amelioration of alkali soils through agroforestry systems in central Indo-Gangetic plains of India 被引量:2
14
作者 Y.P.Singh Gurbachan Singh D.K.Sharma 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第4期887-896,共10页
A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems ... A long-term field study was initiated during 1995 at Central Soil Salinity Research Institute, Regional Research Station, Lucknow (26047'58" N and 80°46'24" E) to analyze the effect of agroforestry systems on amelioration of alkali soils. Three agroforestry systems (pas- toral, silvipastoral and silvicultural) were compared with the control where no agroforestry system was introduced. Tree-based silvicultural and silvipastoral systems were characterized by tree species Prosopis juliflora and Acacia nilotica along with grass species Leptochloafusca, Panicum maximum, Trifolium alexandrium and Chloris gayana. Growth of ten-year-old Prosopis juliflora and Acacia nilotica planted in combi- nation with grasses was significantly higher over the silviculture system with the same species. Tree biomass yields of P. juliflora (77.20 t·ha-1) and A. nilotica (63.20 t·ha-1) planted under silvipastoral system were significantly higher than the sole plantation of (64.50 t·ha-1 and 52.75 t·ha-1). Fodder yield under the pastoral system was significantly higher than the silvipastoral system during initial years but it was at par with that of silvipastoral systems after eight years of plantation. The microbial biomass carbon in the soils of silvipastoral systems was significantly higher than in soils under sole plantation of trees and control systems. The Prosopis-based silvipastoral system proved more effective in reduc- ing soil pH, displacing Na+ from the exchange complex, increasing or- ganic carbon and available N, P and K. Improvement in soil physical properties such as bulk density, porosity, soil moisture and infiltration rate was higher in the Prosopis-based silvipastoral system than in the silviculture system or control On the basis of biomass production and improvement in soil health due to tree + grass systems, silvipastoral agroforestry system could be adopted for sustainable reclamation ofhighly alkali soils. 展开更多
关键词 agroforcstry systems alkali soils biomass production mi-crobial biomass soil amelioration
下载PDF
Studies on the Attached Cultivation of Filamentous Oleaginous Microalga Tribonema minus 被引量:2
15
作者 ZHANG Yan JI Chunli +3 位作者 ZHOU Wenjun WANG Hui WANG Junfeng LIU Tianzhong 《Journal of Ocean University of China》 SCIE CAS CSCD 2020年第3期691-699,共9页
Attached cultivation is a promising method for microalgal biomass production. Filamentous oleaginous microalga Tribonema minus(hereafter T. minus) has shown a remarkable potential for biofuel production in terms of it... Attached cultivation is a promising method for microalgal biomass production. Filamentous oleaginous microalga Tribonema minus(hereafter T. minus) has shown a remarkable potential for biofuel production in terms of its high lipid content. However, the strain has only been cultivated in suspended cultivation systems including open pond and closed photobioreactors. Here, we attempted to study the attached cultivation of T. minus, which might be helpful for its scale-up cultivation and industrial applications. As the results, the optimal conditions for T. minus growth in the attached biofilm are 200 μmol photons m^-2 s^-1 of light intensity and 5% of CO2, and the maximum biomass density of 223 g m^-2 has been achieved under the light intensity. The non-woven fabric as substratum was found as the best substratum in thin layer attached bioreactor, on which the average biomass productivity of T. minus is about(9.73 ± 2.19) g m^-2)d^-1. Furthermore, two attached bioreactor systems, rotary drum and rotation disc, were designed following the light dilution strategy and introduced into T. minus cultivation. The highest footprint areal biomass productivity of these two systems is 33 and 47.1 g m^-2 d^-1, respectively, much higher than that in suspended cultivation system. The results shows that T. minus can be cultured with attached cultivation method to improve its biomass productivity. 展开更多
关键词 Tribonema minus attached culture biomass productivity light dilution
下载PDF
What are the differences in yield formation among two cucumber (Cucumis sativus L.) cultivars and their F1 hybrid? 被引量:1
16
作者 WANG Xiu-juan KANG Meng-zhen +5 位作者 FAN Xing-rong YANG Li-li ZHANG Bao-gui HUANG San-wen Philippe DE REFFYE WANG Fei-yue 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第7期1789-1801,共13页
To elucidate the mechanisms underlying the differences in yield formation among two parents(P1 and P2) and their F1 hybrid of cucumber, biomass production and whole source–sink dynamics were analyzed using a functio... To elucidate the mechanisms underlying the differences in yield formation among two parents(P1 and P2) and their F1 hybrid of cucumber, biomass production and whole source–sink dynamics were analyzed using a functional–structural plant model(FSPM) that simulates both the number and size of individual organs. Observations of plant development and organ biomass were recorded throughout the growth periods of the plants. The GreenLab Model was used to analyze the differences in fruit setting, organ expansion, biomass production and biomass allocation. The source–sink parameters were estimated from the experimental measurements. Moreover, a particle swarm optimization algorithm(PSO) was applied to analyze whether the fruit setting is related to the source–sink ratio. The results showed that the internal source–sink ratio increased in the vegetative stage and reached a peak until the first fruit setting. The high yield of hybrid F1 is the compound result of both fruit setting and the internal source–sink ratio. The optimization results also revealed that the incremental changes in fruit weight result from the increases in sink strength and proportion of plant biomass allocation for fruits. The model-aided analysis revealed that heterosis is a result of a delicate compromise between fruit setting and fruit sink strength. The organlevel model may provide a computational approach to define the target of breeding by combination with a genetic model. 展开更多
关键词 CUCUMBER biomass production functional-structural plant model source-sink ratio FRUIT-SETTING PSO HETEROSIS
下载PDF
Responses of water productivity to irrigation and N supply for hybrid maize seed production in an arid region of Northwest China 被引量:3
17
作者 RAN Hui KANG Shaozhong +4 位作者 LI Fusheng DU Taisheng DING Risheng LI Sien TONG Ling 《Journal of Arid Land》 SCIE CSCD 2017年第4期504-514,共11页
Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Fie... Water and nitrogen(N) are generally two of the most important factors in determining the crop productivity. Proper water and N managements are prerequisites for agriculture sustainable development in arid areas. Field experiments were conducted to study the responses of water productivity for crop yield(WP_(Y-ET)) and final biomass(WP_(B-ET)) of film-mulched hybrid maize seed production to different irrigation and N treatments in the Hexi Corridor, Northwest China during April to September in 2013 and also during April to September in 2014. Three irrigation levels(70%–65%, 60%–55%, and 50%–45% of the field capacity) combined with three N rates(500, 400, and 300 kg N/hm^2) were tested in 2013. The N treatments were adjusted to 500, 300, and 100 kg N/hm^2 in 2014. Results showed that the responses of WP_(Y-ET) and WP_(B-ET) to different irrigation amounts were different. WP_(Y-ET) was significantly reduced by lowering irrigation amounts while WP_(B-ET) stayed relatively insensitive to irrigation amounts. However, WP_(Y-ET) and WP_(B-ET) behaved consistently when subjected to different N treatments. There was a slight effect of reducing N input from 500 to 300 kg/hm^2 on the WP_(Y-ET) and WP_(B-ET), however, when reducing N input to 100 kg/hm^2, the values of WP_(Y-ET) and WP_(B-ET) were significantly reduced. Water is the primary factor and N is the secondary factor in determining both yield(Y) and final biomass(B). Partial factor productivity from applied N(PFP_N) was the maximum under the higher irrigation level and in lower N rate(100–300 kg N/hm^2) in both years(2013 and 2014). Lowering the irrigation amount significantly reduced evapotranspiration(ET), but ET did not vary with different N rates(100–500 kg N/hm^2). Both Y and B had robust linear relationships with ET, but the correlation between B and ET(R^2=0.8588) was much better than that between Y and ET(R^2=0.6062). When ET increased, WP_(Y-ET) linearly increased and WP_(B-ET) decreased. Taking the indices of Y, B, WP_(Y-ET), WP_(B-ET) and PFP_N into account, a higher irrigation level(70%–65% of the field capacity) and a lower N rate(100–300 kg N/hm^2) are recommended to be a proper irrigation and N application strategy for plastic film-mulched hybrid maize seed production in arid Northwest China. 展开更多
关键词 water use efficiency water stress nitrogen use efficiency evapotranspiration water productivity for yield water productivity for biomass arid region
下载PDF
Evaluation of rainwater harvesting and shrub establishment methods for sustainable watershed management in northern Afghanistan
18
作者 LOUHAICHI Mounir HASSAN Sawsan +3 位作者 GAMOUN Mouldi SAFI Navin ABDALLAH Mohamed A.B. ATES Serkan 《Journal of Mountain Science》 SCIE CSCD 2022年第8期2346-2359,共14页
Watershed rangelands in Northern Afghanistan provide various ecosystem services that support the local people's livelihoods,but they are now highly degraded essentially due to the continuous high grazing pressure ... Watershed rangelands in Northern Afghanistan provide various ecosystem services that support the local people's livelihoods,but they are now highly degraded essentially due to the continuous high grazing pressure and recurrent droughts.Effects of shrub establishment method enhanced by water harvesting techniques to rehabilitate degraded rangelands have not been well addressed.The main goal of this study was to evaluate the impact of direct seeding and transplanting of seedlings in combination with semi-circular bunds on growth,yield,and survival rate of four shrub species(Atriplex halimus,Atriplex nummularia,Atriplex lentiformis,andMaireana brevifolia)under semi-arid conditions of Sayyad village,Khulm watershed.Survival rate(%),plant height,width,and plant length(cm)and plant cover(%)were measured for each plant over five occasions.A non-destructive reference unit was used to estimate biomass production.The results showed that growth attributes and biomass production of shrubs were consistently greater in the transplanting compared to direct seeding.On average,the plant length,width,height,volume,cover,and biomass production of transplanted shrubs were greater than direct-seeded shrubs by 24.3%,8.6%,8.7%,121.5%,13.8% and 34.1%,respectively.Biomass production of transplanted seedlings was the highest for A.nummularia(1313.5 g DM/plant)and A.halimus(800 g DM/plant).There was a strong correlation between plant biomass production and plant volume(R^(2)_(Plant volume)=0.88)for the shrub A.nummularia,indicating that plant volume is a key variable for assessing biomass production for this species.Additionally,the survival rate of M.brevifolia was 100% in both planting methods,suggesting that based on better survival this halophytic plant has great potential when restoring degraded rangelands.Collectively,on the basis of better growth rates,yield,and survival,transplanting A.nummularia andA.halimus may enhance shrub establishment and contribute to the rehabilitation of sloping semi-arid degraded areas of Northern Afghanistan. 展开更多
关键词 biomass production Land degradation Rangeland rehabilitation Seed germination Shrub survival Vegetation cover Water harvesting
下载PDF
Tree diversity effects on forest productivity increase through time because of spatial partitioning
19
作者 Shinichi Tatsumi 《Forest Ecosystems》 SCIE CSCD 2020年第3期327-333,共7页
Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diver... Background: Experimental manipulations of tree diversity have often found overyielding in mixed-species plantations. While most experiments are still in the early stages of stand development, the impacts of tree diversity are expected to accumulate over time. Here, I present findings from a 31-year-old tree diversity experiment(as of2018) in Japan.Results: I find that the net diversity effect on stand biomass increased linearly through time. The species mixture achieved 64% greater biomass than the average monoculture biomass 31 years after planting. The complementarity effect was positive and increased exponentially with time. The selection effect was negative and decreased exponentially with time. In the early stages(≤ 3 years), the positive complementarity effect was explained by enhanced growths of early-and mid-successional species in the mixture. Later on(≥ 15 years), it was explained by their increased survival rates owing to vertical spatial partitioning — i.e. alleviation of self-thinning via canopy stratification. The negative selection effect resulted from suppressed growths of late-successional species in the bottom layer.Conclusions: The experiment provides pioneering evidence that the positive impacts of diversity-driven spatial partitioning on forest biomass can accumulate over multiple decades. The results indicate that forest biomass production and carbon sequestration can be enhanced by multispecies afforestation strategies. 展开更多
关键词 biomass productivity Complementarity effect Biodiversity and ecosystem functioning Forest dynamics Mixed plantation Plant succession Selection effect Shade tolerance Stand structure Tree diversity experiment
下载PDF
Succession and Enhancement Mechanism of Ecosystem Productivity in the De-farming Area of the Ecotone Between Agriculture and Animal Husbandry in North China
20
作者 DU Xiong ZHANG Li-feng 《Agricultural Sciences in China》 CAS CSCD 2008年第4期487-496,共10页
The succession and enhancement mechanism of the ecosystem productivity with the characteristics ot de-tarmlng in me ecotone between agriculture and animal husbandry in North China was discussed in order to provide an ... The succession and enhancement mechanism of the ecosystem productivity with the characteristics ot de-tarmlng in me ecotone between agriculture and animal husbandry in North China was discussed in order to provide an ideaology or a technical basis for maintaining the impetus of ecological restoration and economic development in this region. A case study was applied in combination with the theoretical analysis. The results indicated that the biomass productivity of the de-farming subsystem decreased by 38.4-72.3% compared with that of farming subsystem in the ecosystem. The main function of de-farming subsystem was focused on ecological productivity, it caused the ideal beneficial recycling ‘defarming → planting grass → raising animals → earn money' difficult to be realized. With the differentiation of de-farming subsystem, the natural and social resources input to the farming subsystem were accumulated. This laid a basis for the new attributes of economic productivity to be upgraded. The case study indicated that the economic productivity of the ecosystem was increased by 8.85-13.35 times due to re-coupling between the de-farming subsystem and the farming subsystem as well as coupling between microhabitat differentiation and crop production in the subsystems, where the microhabitat differentiation could enrich water and fertilizer in the same field. It was concluded that the important mechanisms to enhance the system productivity in the ecotone between agriculture and animal husbandry of North China included structure rebuilding and opening of the de-farming ecosystem and taking the advantage of complementary cooperative production among different regions under the market economy and rebuilding an open agro-pasture production structure, 展开更多
关键词 ecosystem after de-farming biomass productivity economic productivity resource and environment theecotone between agriculture and animal husbandry of North China
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部