An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Cala...An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.展开更多
The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental re...The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.展开更多
Relationship of population density of oceanic sea skaters collected from tropical and subtropical zones in the Pacific Ocean was examined to chlorophyll concentration/Dissolved Oxygen concentration and biomass in surf...Relationship of population density of oceanic sea skaters collected from tropical and subtropical zones in the Pacific Ocean was examined to chlorophyll concentration/Dissolved Oxygen concentration and biomass in surface sea water. The four parameters shown above were measured at the site of 12<sup>o</sup>N 135<sup>o</sup>N during the cruise, MR13-03 cruise, and at the site of 25<sup>o</sup>N 160<sup>o</sup>E during another cruise KH-14-02. Significant and positive correlation between all biomass (especially invertebrates) and population density of oceanic sea skaters collected with a Neuston-Net trailing during 15 min was shown in overall analysis on the data of the both samplings (p <sup>o</sup>N 160<sup>o</sup>E than that at 12<sup>o</sup>N 135<sup>o</sup>N with similar value of chlorophyll value (p <sup>o</sup>N 160<sup>o</sup>E than that at 12<sup>o</sup>N 135<sup>o</sup>N for keeping high density population of oceanic sea skaters.展开更多
The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alp...The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.展开更多
Gangetic alluvial plain in north India constitutes significant proportions of barren sodic lands. A representative site, where afforestation was carried out during 1960s to rehabilitate the site under forest ecosystem...Gangetic alluvial plain in north India constitutes significant proportions of barren sodic lands. A representative site, where afforestation was carried out during 1960s to rehabilitate the site under forest ecosystem, was selected to assess the restoration success. Three stands (S1, S2, and S3) were selected in a semi-natural subtropical forest at Banthra, Lucknow (26°45’ N, 80°53’ E) on the basis of different vegetation morphology and basal area gradient. Species composition and their growth forms were studied in overstory, understory and ground layer vegetation, in which dominants were assorted. Among the dominants few species were common in the three stands as also in different strata, which perhaps indicate their natural regeneration. Classification of individuals among the different size classes indicated ‘L’ shape distribution in which most of the individuals remained confined in younger groups. Biomass increased from the stand S1 to S3 stand in overstory, and vise versa for understory. Stand S2 consisted of predominance of ground layer biomass over the other stands. Biomass allocation in different plant components differed significantly between the overstory and understory for aerial woody components (stem and branch). Annual litter fall did not differ significantly among the stands, where as fine root biomass (up to 45 cm soil depth) decreased from S1 to S3 stands. Rainy and summer seasons contributed to two-third proportion of total annual fine root production. The state of this rehabilitated forest when compared with the degraded and reference forest of the region indicated that structural complexity, biomass and production levels have been achieved to 70% of the reference forest site even after having a different species composition.展开更多
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and p...Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.展开更多
Ten multipurpose tree species, Terminalia arjuna, Azadirechta indica, Prosopis juliflora, Pongamia pinnata, Casuarina equisetifolia, Prosopis alba, Acacia nilotica, Eucalyptus tereticornis, Pithecellobium dulce and Ca...Ten multipurpose tree species, Terminalia arjuna, Azadirechta indica, Prosopis juliflora, Pongamia pinnata, Casuarina equisetifolia, Prosopis alba, Acacia nilotica, Eucalyptus tereticornis, Pithecellobium dulce and Cassia siamea, were raised in a monoculture tree cropping system on the sodic soil of Gangetic alluvium in north India (26° 47° N: 80°46′ E) for 10 years to evaluate the biomass and bio-energy production. The soil was compact, sodic and impervious to water associated with nutrient deficiency or toxicity. Maximum plant height was recorded with E. tereticornis followed by C.equisetifolia and P. juliflora. A. nilotica performed better than the other species in terms of diameter at breast height (DBH) with a basal area of 13.04 m^2·ha^-1, followed by P. juliflora and C. equisetifolia. P. juliflora and A. nilotica produced nearly similar biomass of 56.50 and 50.75 Mg·ha^-1, respectively, at 10 years; whereas, A. indica, P. pinnata, C. siamea and P. alba did not perform well. P. juliflora scored maximum in net biomass production and nutrient demand. Nutrient (N, P, K, Ca, and Mg) concentrations were higher in leaf component of P. juliflora. However, in woody components, there was little variation between the species. N removal for production of one ton of wood was lowest in Acacia nilotica, P in T. arjuna, K in P. dulce and Ca and Mg in P. juliflora. P. juliflora gave the highest energy production of 1267.75 GJ.ha^-1 followed by A. nilotica with 1206 GJ.ha^-1 and the lowest ofA. indica (520.66 GJ.ha^-1).展开更多
Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitabl...Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitable sites to accommodate them. Conversely, CSP-biomass plants due to lower investment may be an option for CSP penetration in Sahel where Direct Normal Irradiation (DNI) is between 1400 kWh/m2/year and 2000 kWh/m2/year and significant biomass potential. This work presents the results of an identification of suitable sites for hybrid CSP-Biomass in the Sahel, case study of Senegal, taking into account the Direct Normal Irradiation, the availability of water, space and biomass potential. The identified sites have a DNI > 1600 kWh/m2/year. The biogas production capacity is equivalent to 5,096,563 m3/year. The quantity of Typha Australis, invasive plant in Senegal river valley available is estimated at more than 3 million tons. The capacity of electrical energy in this zone is estimated at 6.89 GWe for an installation surface estimated at 275.61 km2. The establishment of CSP/hybrid plants can also contribute to combat the proliferation of Typha Australis.展开更多
A simple and innovative prototype for biomass pyrolysis is presented, together with some experimental results. The setup uses only the thermal solar energy provided by a system of reflecting mirrors (Linear Mirror II)...A simple and innovative prototype for biomass pyrolysis is presented, together with some experimental results. The setup uses only the thermal solar energy provided by a system of reflecting mirrors (Linear Mirror II) to heat a selected agro-waste biomass, such as wheat straw. At the end of the pyrolysis process, solar carbon with a high energy density (around 24 - 28 MJ/kg) is produced from a biomass with an energy density of 16.9 MJ/kg. The perspectives for a future industrial application of this setup are also discussed.展开更多
Solar energy as well as biomass energy techniques suffers from disadvantages, which in some cases limit their potential for substituting fossil fuels. For instance, solar energy is difficult to store, and many kinds o...Solar energy as well as biomass energy techniques suffers from disadvantages, which in some cases limit their potential for substituting fossil fuels. For instance, solar energy is difficult to store, and many kinds of biomass are not suited for combustion, in spite of the fact that they have high energy contents. We describe and industrial size system, which has the goal of overcoming some of these limitations by combining solar- and biomass power. This is achieved by roasting residual biomass by means of hot air provided by solar power only. The solar power is collected by three “Linear Mirror” solar concentrator, they are designed to achieve high efficiency also at northern latitudes. Each one is equipped with an innovative solar-air heat exchanger. The hot air is delivered to a roasting device filled with humid residual biomass. We report the performance of this system from a first commissioning run. The system is intended to help create a closed-cycle economy by means of transforming waste biomasses to a high-quality combustible.展开更多
Four sequence batch reactors(SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding(ADF) mode with different configurations of sludge retention time(SRT), carbo...Four sequence batch reactors(SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding(ADF) mode with different configurations of sludge retention time(SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate(PHA) accumulating mixed microbial cultures(MMCs) from municipal activated sludge.The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism(T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5 days, carbon concentration of 2.52 g COD/L and initial biomass concentration of3.65 g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures(with the maximum PHA content and PHA storage yield(YPHA/S) of61.26% and 0.68 mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.展开更多
Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and cr...Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and crop model parameterization. In order to reduce these uncertainties, we integrate output results of four IPCC emission scenarios of A1 FI, A2, B1 and B2, and five global climatic patterns of HadCM3, PCM, CGCM2, CSIRO2 and ECHAM4 in this study. Based on 20 databases of future climatic change scenarios from the Climatic Research Unit (CRU) , the scenario data of the climatic daily median values are generated on research sites with the global mean temperature increase of 1℃(GMT+ID), 2℃(GMT+2D) and 3℃(GMT+3D). The impact of CO2 fertilization effect on wheat biomass for GMT+I D, GMT+2D and GMT+3D in China's wheat-producing areas is studied in the process model, CERES-Wheat and probabilistic forecasting method. The research results show the CO2 fertilization effect can compensate reduction of wheat biomass with warming temperature in a strong compensating effect. Under the CO2 fertilization effect, the rain-fed and irrigated wheat biomasses increase respectively, and the increment of biomass goes up with temperature rising. The rain-fed wheat biomass increase is greater than the irrigated wheat biomass. Without consideration of CO2 fertilization effect, both irrigated and rain-fed wheat biomasses reduce, and there is a higher probability for the irrigated wheat biomass than that of the rain-fed wheat biomass.展开更多
Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and cr...Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and crop model parameterization. In order to reduce these uncertainties, we integrate output results of four IPCC emission scenarios of A1FI, A2, B1 and B2, and five global climatic patterns of HadCM3, PCM, CGCM2, CSIRO2 and ECHAM4 in this study. Based on 20 databases of future climatic change scenarios from the Climatic Research Unit (CRU) , the scenario data of the climatic daily median values are generated on research sites with the global mean temperature increase of 1 ℃(GMT+1D), 2 ℃ (GMT+2D) and 3 ℃(GMT+3D). The impact of CO2 fertilization effect on wheat biomass for GMT+1D, GMT+2D and GMT+3D in China’s wheat-producing areas is studied in the process model, CERES-Wheat and probabilistic forecasting method. The research results show the CO2 fertilization effect can compensate reduction of wheat biomass with warming temperature in a strong compensating effect. Under the CO2 fertilization effect, the rain-fed and irrigated wheat biomasses increase respectively, and the increment of biomass goes up with temperature rising. The rain-fed wheat biomass increase is greater than the irrigated wheat biomass. Without consideration of CO2 fertilization effect, both irrigated and rain-fed wheat biomasses reduce, and there is a higher probability for the irrigated wheat biomass than that of the rain-fed wheat biomass.展开更多
Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and p...Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and proper rates of applications were of key importance to both crop yields and environmental protection. In this article, the impact of four fertilizers, i.e., inorganic compound fertilizer, organic compound fertilizer, pig manure compost, and peanut cake (peanut oil pressing residue), on chestnut (Castanea mollissima Blume) growth on a slope in South China, and on the total N and total P concentrations in runoff waters have been investigated during two years of study, with an orthogonal experimental design. Results show that the organic compound fertilizer and peanut cake promote the heights of young chestnut trees compared to the control. In addition, peanut cake increases single-fruit weights and organic compound fertilizer raises single-seed weights. All the fertilizers increased the concentrations of total N and total P in runoff waters, except for organic compound fertilizer, in the first year experiment. The observed mean concentrations of total N varied from 1.6 mg/L to 3.2 mg/L and P from 0.12 mg/L to 0.22 mg/L, which were increased with the amount of fertilizer applications, with no pattern of direct proportion. On the basis of these experiment results, organic compound fertilizer at 2 kg/tree and peanut cake at 1 kg/tree are recommended to maximize chestnut growth and minimize water pollution.展开更多
Aims Grassland degradation has become a common problem worldwide.Several studies have analyzed the effects of nitrogen(N)addition on plant growth in grasslands,but few have considered its effects on plant growth in de...Aims Grassland degradation has become a common problem worldwide.Several studies have analyzed the effects of nitrogen(N)addition on plant growth in grasslands,but few have considered its effects on plant growth in degraded grasslands.The aim of this study was to evaluate the effects of N addition on plant growth in grasslands with different levels of degradation in Inner Mongolia,China.Methods A 2-year field experiment was conducted to evaluate plant growth response to N addition in degraded grasslands on the Inner Mongolian Steppe.Grasslands with four levels of degradation were selected for N-addition treatments(0,10,20,30,40,50 g N m−2 year−1).Important Findings Aboveground biomass was increased by N fertilization in degraded grasslands,and N addition was significantly related to increased biomass in grasslands with severe degradation.However,N fertilization did not significantly affect belowground biomass.The effects of N addition on foliar nutrient concentrations in the same species differed among grasslands with different degradation lev-els.There was an inconsistent response to N addition between Sanguisorba officinalis and Vicia sepium in non-degraded grassland.There was a significant positive correlation between foliar N content and aboveground biomass in grasslands with different levels of deg-radation.Our results indicate that the effects of N addition on plant growth in grasslands differ according to the severity of degradation.We conclude that N fertilization may be an effective management technique for degraded grasslands in this area and may improve for-age productivity in the short term.展开更多
In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the...In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the impact of rainfall characteristics on Hg pollution in runoff were analyzed.Results show that the pollution of different Hg species is serious and total Hg THg dissolved Hg HgD and particulate Hg HgP are found to be in the range of 0.173 to 3.347 0.069 to 0.862 and 0.104 to 2.485μg/L respectively.The average EMC value of THg exceeds the Ⅴ class limitation value of Quality standards of surface water environment GB 3838-2002 of China. Hg in runoff mainly exists in particulate form and the concentrations of Hgre 0.250 to 2.821 μg/L are far more than those of Hg0 0.023 to 0.215 μg/L and Hg2+ 0.026 to 0.359 μg/L . The order of rainfall characteristics impacting on Hg pollution in runoff is dry periods 〉runoff time〉duration of rainfall〉storm intensity〉rainfall.展开更多
基金supported by the Chinese Academy of Sciences (No KZCX2-YW-309)the National Basic Research Program (973) of China (No 2004CB418507)
文摘An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration.
基金Sponsored by the State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology(Grant No.2010DX06)the National High Technology Research and Development Program of China(Grant No.2006AA05Z109)the Harbin Science and Technology Bureau(Grant No.2009RFXXS004)
文摘The effects of initial substrate (5-60 g /L) and biomass concentration (0.5-3 g /L) on fermentative hydrogen production by mixed cultures were investigated in batch tests using glucose as substrate.The experimental results showed that the hydrogen production increases as the initial substrate concentration increases from 0 to 25 g /L.It indicated that the shift in the metabolic pathway or in the composition of the bacterial flora occurs.The maximum hydrogen yield of 1.78 mol /mol-glucose is obtained at the substrate concentration of 15 g /L.This study also shows that initial biomass concentration affects the hydrogen yield as the cumulative hydrogen production has been increased with the increase of initial cell concentration up to 1.5 g /L and reached the highest level.The maximum hydrogen yield is obtained at the cell concentration of 1.5 g /L.It indicated that the optimum biomass /substrate ratio,maximizing the hydrogen yield and the hydrogen production rate,is determined to be 0.1 g biomass /g glucose.
文摘Relationship of population density of oceanic sea skaters collected from tropical and subtropical zones in the Pacific Ocean was examined to chlorophyll concentration/Dissolved Oxygen concentration and biomass in surface sea water. The four parameters shown above were measured at the site of 12<sup>o</sup>N 135<sup>o</sup>N during the cruise, MR13-03 cruise, and at the site of 25<sup>o</sup>N 160<sup>o</sup>E during another cruise KH-14-02. Significant and positive correlation between all biomass (especially invertebrates) and population density of oceanic sea skaters collected with a Neuston-Net trailing during 15 min was shown in overall analysis on the data of the both samplings (p <sup>o</sup>N 160<sup>o</sup>E than that at 12<sup>o</sup>N 135<sup>o</sup>N with similar value of chlorophyll value (p <sup>o</sup>N 160<sup>o</sup>E than that at 12<sup>o</sup>N 135<sup>o</sup>N for keeping high density population of oceanic sea skaters.
基金funded by One Hundred Young Persons Project of Institute of Mountain Hazards and Environment (No.SDSQB-2010-02)the National Natural Science Foundation of China (No.41001177)Knowledge Innovation Program of the Chinese Academy of Sciences (Nos.KZCX2-YW-QN31,KZCX2-XB3-08)
文摘The temporal dynamics of the biomass, as well as the carbon (C), nitrogen (N), phosphorus (P) concentrations and accumulation contents, in above- and below-ground vegetation components were determined in the alpine steppe vegetation of Northern Tibet during the growing season of 2OLO. The highest levels of total biomass (311.68 g m-2), total C (115.95 g m-2), total N (2.60 g m-2), and total P (0.90 g m-2) accumulation contents were obtained in August in 2010. Further, biomass and nutrient stocks in the below-ground components were higher than those of the above-ground components. The dominant species viz., Stipa purpurea and Carex moorcrofli had lower biomass and C, N, P accumulations than the companion species which including Oxytropis. spp., Artemisia capillaris Thunb., Aster tataricus L., and SO on.
文摘Gangetic alluvial plain in north India constitutes significant proportions of barren sodic lands. A representative site, where afforestation was carried out during 1960s to rehabilitate the site under forest ecosystem, was selected to assess the restoration success. Three stands (S1, S2, and S3) were selected in a semi-natural subtropical forest at Banthra, Lucknow (26°45’ N, 80°53’ E) on the basis of different vegetation morphology and basal area gradient. Species composition and their growth forms were studied in overstory, understory and ground layer vegetation, in which dominants were assorted. Among the dominants few species were common in the three stands as also in different strata, which perhaps indicate their natural regeneration. Classification of individuals among the different size classes indicated ‘L’ shape distribution in which most of the individuals remained confined in younger groups. Biomass increased from the stand S1 to S3 stand in overstory, and vise versa for understory. Stand S2 consisted of predominance of ground layer biomass over the other stands. Biomass allocation in different plant components differed significantly between the overstory and understory for aerial woody components (stem and branch). Annual litter fall did not differ significantly among the stands, where as fine root biomass (up to 45 cm soil depth) decreased from S1 to S3 stands. Rainy and summer seasons contributed to two-third proportion of total annual fine root production. The state of this rehabilitated forest when compared with the degraded and reference forest of the region indicated that structural complexity, biomass and production levels have been achieved to 70% of the reference forest site even after having a different species composition.
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of the Chinese Academy of Sciences(Grant No.XDB03030505)the National Key Technology Research and Design Program of China(Grant No.2010BAE00739-03)
文摘Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.
文摘Ten multipurpose tree species, Terminalia arjuna, Azadirechta indica, Prosopis juliflora, Pongamia pinnata, Casuarina equisetifolia, Prosopis alba, Acacia nilotica, Eucalyptus tereticornis, Pithecellobium dulce and Cassia siamea, were raised in a monoculture tree cropping system on the sodic soil of Gangetic alluvium in north India (26° 47° N: 80°46′ E) for 10 years to evaluate the biomass and bio-energy production. The soil was compact, sodic and impervious to water associated with nutrient deficiency or toxicity. Maximum plant height was recorded with E. tereticornis followed by C.equisetifolia and P. juliflora. A. nilotica performed better than the other species in terms of diameter at breast height (DBH) with a basal area of 13.04 m^2·ha^-1, followed by P. juliflora and C. equisetifolia. P. juliflora and A. nilotica produced nearly similar biomass of 56.50 and 50.75 Mg·ha^-1, respectively, at 10 years; whereas, A. indica, P. pinnata, C. siamea and P. alba did not perform well. P. juliflora scored maximum in net biomass production and nutrient demand. Nutrient (N, P, K, Ca, and Mg) concentrations were higher in leaf component of P. juliflora. However, in woody components, there was little variation between the species. N removal for production of one ton of wood was lowest in Acacia nilotica, P in T. arjuna, K in P. dulce and Ca and Mg in P. juliflora. P. juliflora gave the highest energy production of 1267.75 GJ.ha^-1 followed by A. nilotica with 1206 GJ.ha^-1 and the lowest ofA. indica (520.66 GJ.ha^-1).
文摘Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitable sites to accommodate them. Conversely, CSP-biomass plants due to lower investment may be an option for CSP penetration in Sahel where Direct Normal Irradiation (DNI) is between 1400 kWh/m2/year and 2000 kWh/m2/year and significant biomass potential. This work presents the results of an identification of suitable sites for hybrid CSP-Biomass in the Sahel, case study of Senegal, taking into account the Direct Normal Irradiation, the availability of water, space and biomass potential. The identified sites have a DNI > 1600 kWh/m2/year. The biogas production capacity is equivalent to 5,096,563 m3/year. The quantity of Typha Australis, invasive plant in Senegal river valley available is estimated at more than 3 million tons. The capacity of electrical energy in this zone is estimated at 6.89 GWe for an installation surface estimated at 275.61 km2. The establishment of CSP/hybrid plants can also contribute to combat the proliferation of Typha Australis.
文摘A simple and innovative prototype for biomass pyrolysis is presented, together with some experimental results. The setup uses only the thermal solar energy provided by a system of reflecting mirrors (Linear Mirror II) to heat a selected agro-waste biomass, such as wheat straw. At the end of the pyrolysis process, solar carbon with a high energy density (around 24 - 28 MJ/kg) is produced from a biomass with an energy density of 16.9 MJ/kg. The perspectives for a future industrial application of this setup are also discussed.
文摘Solar energy as well as biomass energy techniques suffers from disadvantages, which in some cases limit their potential for substituting fossil fuels. For instance, solar energy is difficult to store, and many kinds of biomass are not suited for combustion, in spite of the fact that they have high energy contents. We describe and industrial size system, which has the goal of overcoming some of these limitations by combining solar- and biomass power. This is achieved by roasting residual biomass by means of hot air provided by solar power only. The solar power is collected by three “Linear Mirror” solar concentrator, they are designed to achieve high efficiency also at northern latitudes. Each one is equipped with an innovative solar-air heat exchanger. The hot air is delivered to a roasting device filled with humid residual biomass. We report the performance of this system from a first commissioning run. The system is intended to help create a closed-cycle economy by means of transforming waste biomasses to a high-quality combustible.
基金supported by the National Natural Science Foundation of China(No.51378142)the Program for New Century Excellent Talents in University(No.NCET-12-0156)+1 种基金the Open Project of the State Key Laboratory of Urban Water ResourceEnvironment(Harbin institute of Technology)(No.2015DX10)
文摘Four sequence batch reactors(SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding(ADF) mode with different configurations of sludge retention time(SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate(PHA) accumulating mixed microbial cultures(MMCs) from municipal activated sludge.The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism(T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5 days, carbon concentration of 2.52 g COD/L and initial biomass concentration of3.65 g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures(with the maximum PHA content and PHA storage yield(YPHA/S) of61.26% and 0.68 mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed.
基金National Natural Science Foundation of China, No.41071030
文摘Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and crop model parameterization. In order to reduce these uncertainties, we integrate output results of four IPCC emission scenarios of A1 FI, A2, B1 and B2, and five global climatic patterns of HadCM3, PCM, CGCM2, CSIRO2 and ECHAM4 in this study. Based on 20 databases of future climatic change scenarios from the Climatic Research Unit (CRU) , the scenario data of the climatic daily median values are generated on research sites with the global mean temperature increase of 1℃(GMT+ID), 2℃(GMT+2D) and 3℃(GMT+3D). The impact of CO2 fertilization effect on wheat biomass for GMT+I D, GMT+2D and GMT+3D in China's wheat-producing areas is studied in the process model, CERES-Wheat and probabilistic forecasting method. The research results show the CO2 fertilization effect can compensate reduction of wheat biomass with warming temperature in a strong compensating effect. Under the CO2 fertilization effect, the rain-fed and irrigated wheat biomasses increase respectively, and the increment of biomass goes up with temperature rising. The rain-fed wheat biomass increase is greater than the irrigated wheat biomass. Without consideration of CO2 fertilization effect, both irrigated and rain-fed wheat biomasses reduce, and there is a higher probability for the irrigated wheat biomass than that of the rain-fed wheat biomass.
基金National Natural Science Foundation of China, No.41071030
文摘Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and crop model parameterization. In order to reduce these uncertainties, we integrate output results of four IPCC emission scenarios of A1FI, A2, B1 and B2, and five global climatic patterns of HadCM3, PCM, CGCM2, CSIRO2 and ECHAM4 in this study. Based on 20 databases of future climatic change scenarios from the Climatic Research Unit (CRU) , the scenario data of the climatic daily median values are generated on research sites with the global mean temperature increase of 1 ℃(GMT+1D), 2 ℃ (GMT+2D) and 3 ℃(GMT+3D). The impact of CO2 fertilization effect on wheat biomass for GMT+1D, GMT+2D and GMT+3D in China’s wheat-producing areas is studied in the process model, CERES-Wheat and probabilistic forecasting method. The research results show the CO2 fertilization effect can compensate reduction of wheat biomass with warming temperature in a strong compensating effect. Under the CO2 fertilization effect, the rain-fed and irrigated wheat biomasses increase respectively, and the increment of biomass goes up with temperature rising. The rain-fed wheat biomass increase is greater than the irrigated wheat biomass. Without consideration of CO2 fertilization effect, both irrigated and rain-fed wheat biomasses reduce, and there is a higher probability for the irrigated wheat biomass than that of the rain-fed wheat biomass.
基金Project supported by the Science and Technology Department of Guang-dong Province (No: 2004B33301007)the Rockefeller Brothers Fund
文摘Growing fruit trees on the slopes of rolling hills in South China was causing serious environmental problems because of heavy application of chemical fertilizers and soil erosion. Suitable sources of fertilizers and proper rates of applications were of key importance to both crop yields and environmental protection. In this article, the impact of four fertilizers, i.e., inorganic compound fertilizer, organic compound fertilizer, pig manure compost, and peanut cake (peanut oil pressing residue), on chestnut (Castanea mollissima Blume) growth on a slope in South China, and on the total N and total P concentrations in runoff waters have been investigated during two years of study, with an orthogonal experimental design. Results show that the organic compound fertilizer and peanut cake promote the heights of young chestnut trees compared to the control. In addition, peanut cake increases single-fruit weights and organic compound fertilizer raises single-seed weights. All the fertilizers increased the concentrations of total N and total P in runoff waters, except for organic compound fertilizer, in the first year experiment. The observed mean concentrations of total N varied from 1.6 mg/L to 3.2 mg/L and P from 0.12 mg/L to 0.22 mg/L, which were increased with the amount of fertilizer applications, with no pattern of direct proportion. On the basis of these experiment results, organic compound fertilizer at 2 kg/tree and peanut cake at 1 kg/tree are recommended to maximize chestnut growth and minimize water pollution.
基金This research was supported by the Projects of the National Natural Science Foundation of China(Nos.31630009 and 31321061)National key research and development program(No.2016YFC0500701)+1 种基金National Basic Research Program of China(No.2013CB956303)Research Fund of State Key Laboratory of Soil and Sustainable Agriculture,Nanjing Institute of Soil Science,Chinese Academy of Science(Y412201439).
文摘Aims Grassland degradation has become a common problem worldwide.Several studies have analyzed the effects of nitrogen(N)addition on plant growth in grasslands,but few have considered its effects on plant growth in degraded grasslands.The aim of this study was to evaluate the effects of N addition on plant growth in grasslands with different levels of degradation in Inner Mongolia,China.Methods A 2-year field experiment was conducted to evaluate plant growth response to N addition in degraded grasslands on the Inner Mongolian Steppe.Grasslands with four levels of degradation were selected for N-addition treatments(0,10,20,30,40,50 g N m−2 year−1).Important Findings Aboveground biomass was increased by N fertilization in degraded grasslands,and N addition was significantly related to increased biomass in grasslands with severe degradation.However,N fertilization did not significantly affect belowground biomass.The effects of N addition on foliar nutrient concentrations in the same species differed among grasslands with different degradation lev-els.There was an inconsistent response to N addition between Sanguisorba officinalis and Vicia sepium in non-degraded grassland.There was a significant positive correlation between foliar N content and aboveground biomass in grasslands with different levels of deg-radation.Our results indicate that the effects of N addition on plant growth in grasslands differ according to the severity of degradation.We conclude that N fertilization may be an effective management technique for degraded grasslands in this area and may improve for-age productivity in the short term.
基金The Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘In order to assess the mercury Hg pollution in urban stormwater runoff in Nanjing 11 rainfall events in the Maqun region of Nanjing circle expressway were monitored and the events mean concentrations EMC of Hg and the impact of rainfall characteristics on Hg pollution in runoff were analyzed.Results show that the pollution of different Hg species is serious and total Hg THg dissolved Hg HgD and particulate Hg HgP are found to be in the range of 0.173 to 3.347 0.069 to 0.862 and 0.104 to 2.485μg/L respectively.The average EMC value of THg exceeds the Ⅴ class limitation value of Quality standards of surface water environment GB 3838-2002 of China. Hg in runoff mainly exists in particulate form and the concentrations of Hgre 0.250 to 2.821 μg/L are far more than those of Hg0 0.023 to 0.215 μg/L and Hg2+ 0.026 to 0.359 μg/L . The order of rainfall characteristics impacting on Hg pollution in runoff is dry periods 〉runoff time〉duration of rainfall〉storm intensity〉rainfall.