A total of 64 patients with acute lacunar infarction were enrolled within 24 hours of onset. The patients received conventional therapy (antiplatelet drugs and hypolipidemic drugs) alone or conventional therapy plus...A total of 64 patients with acute lacunar infarction were enrolled within 24 hours of onset. The patients received conventional therapy (antiplatelet drugs and hypolipidemic drugs) alone or conventional therapy plus 450 mg Xueshuantong once a day. The main ingredient of the Xueshuantong lyophilized powder used for injection was Panax notoginseng saponins. Assessments were made at admission and at discharge using the National Institutes of Health Stroke Scale, the Activity of Daily Living and the Mini-Mental State Examination. Additionally, the relative cerebral blood flow, relative cerebral blood volume and relative mean transit time in the region of interest were calculated within 24 hours after the onset of lacunar infarction, using dynamic susceptibility contrast magnetic resonance perfusion imaging technology. Patients underwent a follow-up MRI scan after 4 weeks of treatment. There was an improvement in the Activity of Daily Living scores and a greater reduction in the scores on the National Institutes of Health Stroke Scale in the treatment group than in the control group. However, the Mini-Mental State Examination scores showed no significant differences after 4 weeks of treatment. Compared with the control group, the relative cerebral blood flow at discharge had increased and showed a greater improvement in the treatment group. Furthermore, there was a reduction in the relative mean transit time at discharge and the value was lower in the treatment group than in the control group. The experimental findings indicate that Xueshuantong treatment improves neurological deficits in elderly patients with lacunar infarction, and the mechanism may be related to increased cerebral perfusion.展开更多
Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effec...Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+from lead acetate [Pb (0H30OO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 48-hour exposure to 0-200 pM Pb2+. In the second part, 10 pM bromodeoxyuridine was added into the culture medium of passage 2 hippocampal neural stem cells after 48-hour exposure to 0- 200 pM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural stem cells were allowed to grow in the differentiation medium with 0-200 pM Pb2+. Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2~ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+cytotoxicity.展开更多
Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarctio...Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.展开更多
Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism p...Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism proteins are expressed in the brain including transferrin receptor and ferritin-H. However, it is still unknown whether they are developmentally regulated in oligodendrocyte lineage cells for myelination. Here, using an in vitro cultured differentiation model of oligodendrocytes, we found that both transferrin receptor and ferritin-H are significantly upregulated during oligodendrocyte maturation, implying the essential role of iron in the development of oligodendrocytes. Additional different doses of Fe3+ in the cultured medium did not affect oligodendrocyte precursor cell maturation or ferritin-H expression but decreased the expression of the transferrin receptor. These results indicate that upregulation of both transferrin receptor and ferritin-H contributes to maturation and myelination of oligodendrocyte precursor cells.展开更多
In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhance...In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.展开更多
Buyang Huanwu Decoction fraction extracted from Buyang Huanwu Decoction contains saponins of Astragalus, total paeony glycoside and safflower flavones. The aim of this study was to demonstrate the neuroprotective effe...Buyang Huanwu Decoction fraction extracted from Buyang Huanwu Decoction contains saponins of Astragalus, total paeony glycoside and safflower flavones. The aim of this study was to demonstrate the neuroprotective effect and mechanism of Buyang Huanwu Decoction fraction on ischemic injury both in vivo and in vitro. In vivo experiments showed that 50-200 mg/kg Buyang Huanwu Decoction fraction reduced infarct volume and pathological injury in ischemia/reperfusion rats, markedly inhibited expression of nuclear factor-KB and tumor necrosis factor-a and promoted nestin protein expression in brain tissue. Buyang Huanwu Decoction fraction (200 mg/kg) exhibited significant effects, which were similar to those of 100 mg/kg Ginkgo biloba extract. In vitro experimental results demonstrated that 10-100 mg/L Buyang Huanwu Decoction fraction significantly improved cell viability, decreased the release of lactate dehydrogenase and malondialdehyde levels, and inhibited the rate of apoptosis in HT22 cells following oxygen-glucose deprivation. Buyang Huanwu Decoction fraction (100 mg/L) exhibited significant effects, which were similar to those of 100 mg/L Ginkgo biloba extract. These findings suggest that Buyang Huanwu Decoction fraction may represent a novel, protective strategy against cerebral ischemia/reperfusion injury in rats and oxygen-glucose deprivation-induced damage in HT22 cells in vitro by attenuating the inflammatory response and cellular apoptosis.展开更多
Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an ...Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an attempt to observe the effect of baicalin on neurogenesis in chronically stressed rats. Results showed that subcutaneous injection of corticosterone significantly decreased the total number of doublecortin-positive neurons in the hippocampus. The reduced cell number caused by corticosterone was mainly due to the decrease of class II doublecortin-positive neurons, but the class I doublecortin-positive neurons were unaffected. Baicalin treatment increased the number of both class I and class II doublecortin-positive neurons. In addition, doublecortin-positive neurons showed less complexity in dendritic morphology after corticosterone injection, and this change was totally reversed by baicalin treatment. These findings suggest that baicalin exhibits a beneficial effect on adult neurogenesis.展开更多
In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic ...In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanfi (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanfi and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.展开更多
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memor...Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.展开更多
The retina of Wistar rats within 1-3 days of birth were dissociated into a retinal ceil suspension using 0.05% trypsin digestion. The cell suspension was incubated in Dulbecco's modified Eagle's medium for 24 hours,...The retina of Wistar rats within 1-3 days of birth were dissociated into a retinal ceil suspension using 0.05% trypsin digestion. The cell suspension was incubated in Dulbecco's modified Eagle's medium for 24 hours, followed by neurobasal medium for 5-7 days. Nissl staining showed that 79.86% of primary cultured retinal cells were positive and immunocytochemical staining showed that the purity of anti-neurofilament heavy chain antibody-positive cells was 71.53%, indicating that the primary culture system of rat retinal neurons was a reliable and stable cell system with neurons as the predominant cell type. The primary cultured retinal neurons were further treated with 0, 5.5, 15, 25, and 35 mM glucose for 24, 48, and 72 hours. The thiazolyl blue tetrazolium bromide test and flow cytometry showed that with increasing glucose concentration and treatment duration, the viability of retinal neurons was reduced, and apoptosis increased. In particular, 35 mM glucose exhibited the most significant effect at 72 hours. Thus, rat retinal neurons treated with 35 mM glucose for 72 hours can be used to simulate a neuronal model of diabetic retinopathy.展开更多
Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this st...Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury展开更多
Parthenogenetic embryonic stem cells have pluripotent differentiation potentials, akin to fertilized embryo-derived embryonic stem cells. The aim of this study was to compare the neuronal differentiation potential of ...Parthenogenetic embryonic stem cells have pluripotent differentiation potentials, akin to fertilized embryo-derived embryonic stem cells. The aim of this study was to compare the neuronal differentiation potential of parthenogenetic and fertilized embryo-derived embryonic stem cells. Before differentiation, karyotype analysis was performed, with normal karyotypes detected in both parthenogenetic and fertilized embryo-derived embryonic stem cells. Sex chromosomes were identified as XX. Immunocytochemistry and quantitative real-time PCR detected high expression of the pluripotent gene, Oct4, at both the mRNA and protein levels, indicating pluripotent differentiation potential of the two embryonic stem cell subtypes. Embryonic stern cells were induced with retinoic acid to form embryoid bodies, and then dispersed into single cells. Single cells were differentiated in N2 differentiation medium for 9 days. Immunocytochemistry showed parthenogenetic and fertilized embryo-derived embryonic stem cells both express the neuronal cell markers nestin, ~lll-tubulin and myelin basic protein. Quantitative real-time PCR found expression of neuregenesis related genes (Sox-1, Nestin, GABA, Pax6, Zic5 and Pitxl) in both types of embryonic stem cells, and Oct4 expression was significantly decreased. Nestin and Pax6 expression in parthenogenetic embryonic stem cells was significantly higher than that in fertilized embryo-derived embryonic stem cells. Thus, our experimental findings indicate that parthenogenetic embryonic stem cells have stronger neuronal differentiation potential than fertilized embryo-derived embryonic stem cells.展开更多
The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise...The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particulady the medium-intensity acute exhaustive exercise, when compared with the control. Immunohistochemistry showed significantly increased expression of the antiapoptotic protein Bcl-2 and the proapoptotJc proteJn Bax in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise. Additionally, the ratio of Bax to Bcl-2 increased in both exercise groups. In particular, the medium-intensity acute exhaustive exercise group had significantly higher Bax and Bcl-2 protein expression and a higher Bax/Bcl-2 ratio. These findings indicate that acute exhaustive exercise of different intensities can induce neural cell apoptosis in the hippocampus, and that medium-intensity acute exhaustive exercise results in greater damage when compared with high-intensity exercise.展开更多
Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study rat neural stern cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured ne...Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study rat neural stern cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurespheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.展开更多
Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in viv...Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.展开更多
In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-asparti...In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.展开更多
Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral...Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral ischemia/reperfusion injury rat model was established using a modified four-vessel occlusion method. Rats were treated with different doses of tea polyphenols (25, 50, 100, 150, 200 mg/kg) via intraperitoneal injection. Results showed that after 2, 6, 12, 24, 48 and 72 hours of reperfusion, peroxide dismutase activity and total antioxidant capacity in brain tissue gradually increased, while malondialdehyde content gradually decreased after tea polyphenol intervention. Tea polyphenols at 200 mg/kg resulted in the most apparent changes. Terminal deoxynucleotidyl transferase-mediated nick end labeling and flow cytometry showed that 200 mg/kg tea polyphenols significantly reduced the number and percentage of apoptotJc cells in the hippocampal CA1 region of rats after cerebral ischemia/reperfusion injury. The open field test and elevated plus maze experiments showed that tea polyphenols at 200 mg/kg strengthened exploratory behavior and reduced anxiety of cerebral ischemia/reperfusion injured rats. Experimental findings indicate that tea polyphenols protected rats against cerebral ischemia/ reperfusion injury and 200 mg/kg is regarded as the optimal dose.展开更多
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L...Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.展开更多
Transtentorial herniation is one of the causes of motor weakness in traumatic brain injury. In this study, we report on a patient who underwent decompressive craniectomy due to traumatic intracerebral hemorrhage. Brai...Transtentorial herniation is one of the causes of motor weakness in traumatic brain injury. In this study, we report on a patient who underwent decompressive craniectomy due to traumatic intracerebral hemorrhage. Brain CT images taken after surgery showed intracerebral hemorrhage in the left fronto-temporal lobe and left transtentorial herniation. The patient presented with severe paralysis of the right extremities at the time of intracerebral hemorrhage onset, but the limb motor function recovered partially at 6 months after onset and to nearly normal level at 27 months. Through diffusion tensor tractography, the left corticospinal tract was disrupted below the cerebral peduncle at 1 month after onset and the disrupted left corticospinal tract was reconstructed at 27 months. These findings suggest that recovery of limb motor function in a patient with traumatic transtentorial herniation can come to be true by recovery of corticospinal tract.展开更多
基金supported by the Technological Foundation Project of Traditional Chinese Medicine Science of Zhejiang Province,No.2012ZA077
文摘A total of 64 patients with acute lacunar infarction were enrolled within 24 hours of onset. The patients received conventional therapy (antiplatelet drugs and hypolipidemic drugs) alone or conventional therapy plus 450 mg Xueshuantong once a day. The main ingredient of the Xueshuantong lyophilized powder used for injection was Panax notoginseng saponins. Assessments were made at admission and at discharge using the National Institutes of Health Stroke Scale, the Activity of Daily Living and the Mini-Mental State Examination. Additionally, the relative cerebral blood flow, relative cerebral blood volume and relative mean transit time in the region of interest were calculated within 24 hours after the onset of lacunar infarction, using dynamic susceptibility contrast magnetic resonance perfusion imaging technology. Patients underwent a follow-up MRI scan after 4 weeks of treatment. There was an improvement in the Activity of Daily Living scores and a greater reduction in the scores on the National Institutes of Health Stroke Scale in the treatment group than in the control group. However, the Mini-Mental State Examination scores showed no significant differences after 4 weeks of treatment. Compared with the control group, the relative cerebral blood flow at discharge had increased and showed a greater improvement in the treatment group. Furthermore, there was a reduction in the relative mean transit time at discharge and the value was lower in the treatment group than in the control group. The experimental findings indicate that Xueshuantong treatment improves neurological deficits in elderly patients with lacunar infarction, and the mechanism may be related to increased cerebral perfusion.
基金supported by a grant from the University of Hong Kong, China
文摘Lead ion (Pb2+) has been proven to be a neurotoxin due to its neurotoxicity on mammalian nervous system, especially for the developing brains of juveniles. However, many reported studies involved the negative effects of Pb2+ on adult neural cells of humans or other mammals, only few of which have examined the effects of Pb2+ on neural stem cells. The purpose of this study was to reveal the biological effects of Pb2+from lead acetate [Pb (0H30OO)2] on viability, proliferation and differentiation of neural stem cells derived from the hippocampus of newborn rats aged 7 days and adult rats aged 90 days, respectively. This study was carried out in three parts. In the first part, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT viability assay) was used to detect the effects of Pb2+ on the cell viability of passage 2 hippocampal neural stem cells after 48-hour exposure to 0-200 pM Pb2+. In the second part, 10 pM bromodeoxyuridine was added into the culture medium of passage 2 hippocampal neural stem cells after 48-hour exposure to 0- 200 pM Pb2+, followed by immunocytochemical staining with anti-bromodeoxyuridine to demonstrate the effects of Pb2+ on cell proliferation. In the last part, passage 2 hippocampal neural stem cells were allowed to grow in the differentiation medium with 0-200 pM Pb2+. Immunocytochemical staining with anti-microtubule-associated protein 2 (a neuron marker), anti-glial fibrillary acidic protein (an astrocyte marker), and anti-RIP (an oligodendrocyte marker) was performed to detect the differentiation commitment of affected neural stem cells after 6 days. The data showed that Pb2~ inhibited not only the viability and proliferation of rat hippocampal neural stem cells, but also their neuronal and oligodendrocyte differentiation in vitro. Moreover, increased activity of astrocyte differentiation of hippocampal neural stem cells from both newborn and adult rats was observed after exposure to high concentration of lead ion in vitro. These findings suggest that hippocampal neural stem cells of newborn rats were more sensitive than those from adult rats to Pb2+cytotoxicity.
基金supported by the Guangdong Province Medical Science Research Fund, No. B200258
文摘Major ozonated autohemotherapy is classically used in treating ischemic disorder of the lower limbs In the present study, we performed major ozonated autohemotherapy treatment in patients with acute cerebral infarction, and assessed outcomes according to the U.S. National Institutes of Health Stroke Score, Modified Rankin Scale, and transcranial magnetic stimulation motor-evoked potential. Compared with the control group, the clinical total effective rate and the cortical potential rise rate of the upper limbs were significantly higher, the central motor conduction time of upper limb was significantly shorter, and the upper limb motor-evoked potential amplitude was significantly increased, in the ozone group. In the ozone group, the National Institutes of Health Stroke Score was positively correlated with the central motor conduction time and the motor-evoked potential amplitude of the upper limb. Central motor conduction time and motor-evoked potential amplitude of the upper limb may be effective indicators of motor-evoked potentials to assess upper limb motor function in cerebral infarct patients. Furthermore, major ozonated autohemotherapy may promote motor function recovery of the upper limb in patients with acute cerebral infarction.
基金funded by Shanghai Municipal Health Bureau,No.KPB-WSJ1004the National Natural Science Foundation of China,No.81200971
文摘Iron is an essential trophic element that is required for cell viability and differentiation, especially in oligodendrocytes, which consume relatively high rates of energy to produce myelin. Multiple iron metabolism proteins are expressed in the brain including transferrin receptor and ferritin-H. However, it is still unknown whether they are developmentally regulated in oligodendrocyte lineage cells for myelination. Here, using an in vitro cultured differentiation model of oligodendrocytes, we found that both transferrin receptor and ferritin-H are significantly upregulated during oligodendrocyte maturation, implying the essential role of iron in the development of oligodendrocytes. Additional different doses of Fe3+ in the cultured medium did not affect oligodendrocyte precursor cell maturation or ferritin-H expression but decreased the expression of the transferrin receptor. These results indicate that upregulation of both transferrin receptor and ferritin-H contributes to maturation and myelination of oligodendrocyte precursor cells.
基金supported by the National Basic Research Program of China(973 Program),No.2006CB504505,2012CB518504the Third Key Construction Program of "211 Project" of Guangdong Province
文摘In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.
基金supported by a grant from the Major Programs of Anhui Science and Technology Special Funds,No.08010302099the Doctor Funds of Anhui Medical University,No.XJ200813
文摘Buyang Huanwu Decoction fraction extracted from Buyang Huanwu Decoction contains saponins of Astragalus, total paeony glycoside and safflower flavones. The aim of this study was to demonstrate the neuroprotective effect and mechanism of Buyang Huanwu Decoction fraction on ischemic injury both in vivo and in vitro. In vivo experiments showed that 50-200 mg/kg Buyang Huanwu Decoction fraction reduced infarct volume and pathological injury in ischemia/reperfusion rats, markedly inhibited expression of nuclear factor-KB and tumor necrosis factor-a and promoted nestin protein expression in brain tissue. Buyang Huanwu Decoction fraction (200 mg/kg) exhibited significant effects, which were similar to those of 100 mg/kg Ginkgo biloba extract. In vitro experimental results demonstrated that 10-100 mg/L Buyang Huanwu Decoction fraction significantly improved cell viability, decreased the release of lactate dehydrogenase and malondialdehyde levels, and inhibited the rate of apoptosis in HT22 cells following oxygen-glucose deprivation. Buyang Huanwu Decoction fraction (100 mg/L) exhibited significant effects, which were similar to those of 100 mg/L Ginkgo biloba extract. These findings suggest that Buyang Huanwu Decoction fraction may represent a novel, protective strategy against cerebral ischemia/reperfusion injury in rats and oxygen-glucose deprivation-induced damage in HT22 cells in vitro by attenuating the inflammatory response and cellular apoptosis.
基金supported by the National Natural Science Foundation of China,No. 81070994the Scientific Research Foundation for the Returned Overseas Chinese Scholars,Ministry of Education of the People’s Republic of China,No. 2009/8
文摘Chronic stress models, established in adult Sprague-Dawley rats through a 14-day subcutaneous injection of 40 mg/kg corticosterone, once per day, were given a daily oral feeding of 50 mg/kg baicalin. The study was an attempt to observe the effect of baicalin on neurogenesis in chronically stressed rats. Results showed that subcutaneous injection of corticosterone significantly decreased the total number of doublecortin-positive neurons in the hippocampus. The reduced cell number caused by corticosterone was mainly due to the decrease of class II doublecortin-positive neurons, but the class I doublecortin-positive neurons were unaffected. Baicalin treatment increased the number of both class I and class II doublecortin-positive neurons. In addition, doublecortin-positive neurons showed less complexity in dendritic morphology after corticosterone injection, and this change was totally reversed by baicalin treatment. These findings suggest that baicalin exhibits a beneficial effect on adult neurogenesis.
基金supported by the National Natural Science Foundation of China,No.30472241,90709031 and 30973796the National Basic Research Program of China for Traditional Chinese Medicine Theory("973" Program),No.2007CB512505+1 种基金the Natural Foundation of Hainan Province(No.310054)a grant from the Health Department of Hainan Province(QiongWei 2010-45)
文摘In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanfi (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanfi and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.
基金supported by grants from the National Natural Science Foundation of China, No. 30872132
文摘Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
基金supported by the Department of Health of Hunan Province, No. B2009-050the Science and Technology Foundation of Hunan Province, No.2012FJ4077
文摘The retina of Wistar rats within 1-3 days of birth were dissociated into a retinal ceil suspension using 0.05% trypsin digestion. The cell suspension was incubated in Dulbecco's modified Eagle's medium for 24 hours, followed by neurobasal medium for 5-7 days. Nissl staining showed that 79.86% of primary cultured retinal cells were positive and immunocytochemical staining showed that the purity of anti-neurofilament heavy chain antibody-positive cells was 71.53%, indicating that the primary culture system of rat retinal neurons was a reliable and stable cell system with neurons as the predominant cell type. The primary cultured retinal neurons were further treated with 0, 5.5, 15, 25, and 35 mM glucose for 24, 48, and 72 hours. The thiazolyl blue tetrazolium bromide test and flow cytometry showed that with increasing glucose concentration and treatment duration, the viability of retinal neurons was reduced, and apoptosis increased. In particular, 35 mM glucose exhibited the most significant effect at 72 hours. Thus, rat retinal neurons treated with 35 mM glucose for 72 hours can be used to simulate a neuronal model of diabetic retinopathy.
文摘Stem cell transplantation can promote functional restoration following acute spinal cord injury (injury time 〈 3 months), but the safety and long-term efficacy of this treatment need further exploration. In this study, 25 patients with traumatic spinal cord injury (injury time 〉 6 months) were treated with human umbilical cord blood stem cells via intravenous and intrathecal injection. The follow-up period was 12 months after transplantation. Results found that autonomic nerve functions were restored and the latent period of somatosensory evoked potentials was reduced. There were no severe adverse reactions in patients following stem cell transplantation. These experimental findings suggest that the transplantation of human umbilical cord blood stem cells is a safe and effective treatment for patients with traumatic spinal cord injury
基金supported by the National Natural Science Foundation of China,No. 30900155 and 81070496the Research Foundation of Education Bureau of Shaanxi Province,China,No. 09JK785+1 种基金Foundation of Interdisciplinary for Postgraduates from Northwest University,No. 08YJC22the Key Laboratory Funding of Northwestern University,Shaanxi Province in China
文摘Parthenogenetic embryonic stem cells have pluripotent differentiation potentials, akin to fertilized embryo-derived embryonic stem cells. The aim of this study was to compare the neuronal differentiation potential of parthenogenetic and fertilized embryo-derived embryonic stem cells. Before differentiation, karyotype analysis was performed, with normal karyotypes detected in both parthenogenetic and fertilized embryo-derived embryonic stem cells. Sex chromosomes were identified as XX. Immunocytochemistry and quantitative real-time PCR detected high expression of the pluripotent gene, Oct4, at both the mRNA and protein levels, indicating pluripotent differentiation potential of the two embryonic stem cell subtypes. Embryonic stern cells were induced with retinoic acid to form embryoid bodies, and then dispersed into single cells. Single cells were differentiated in N2 differentiation medium for 9 days. Immunocytochemistry showed parthenogenetic and fertilized embryo-derived embryonic stem cells both express the neuronal cell markers nestin, ~lll-tubulin and myelin basic protein. Quantitative real-time PCR found expression of neuregenesis related genes (Sox-1, Nestin, GABA, Pax6, Zic5 and Pitxl) in both types of embryonic stem cells, and Oct4 expression was significantly decreased. Nestin and Pax6 expression in parthenogenetic embryonic stem cells was significantly higher than that in fertilized embryo-derived embryonic stem cells. Thus, our experimental findings indicate that parthenogenetic embryonic stem cells have stronger neuronal differentiation potential than fertilized embryo-derived embryonic stem cells.
基金supported by the National Natural Science Foundation of China, No. 30500269
文摘The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particulady the medium-intensity acute exhaustive exercise, when compared with the control. Immunohistochemistry showed significantly increased expression of the antiapoptotic protein Bcl-2 and the proapoptotJc proteJn Bax in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise. Additionally, the ratio of Bax to Bcl-2 increased in both exercise groups. In particular, the medium-intensity acute exhaustive exercise group had significantly higher Bax and Bcl-2 protein expression and a higher Bax/Bcl-2 ratio. These findings indicate that acute exhaustive exercise of different intensities can induce neural cell apoptosis in the hippocampus, and that medium-intensity acute exhaustive exercise results in greater damage when compared with high-intensity exercise.
文摘Collagen protein is an ideal scaffold material for the transplantation of neural stem cells. In this study rat neural stern cells were seeded into a three-dimensional collagen gel scaffold, with suspension cultured neural stem cells being used as a control group. Neural stem cells, which were cultured in medium containing epidermal growth factor and basic fibroblast growth factor, actively expanded and formed neurospheres in both culture groups. In serum-free medium conditions, the processes extended from neurospheres in the collagen gel group were much longer than those in the suspension culture group. Immunofluorescence staining showed that neurespheres cultured in collagen gels were stained positive for nestin and differentiated cells were stained positive for the neuronal marker βIII-tubulin, the astrocytic marker glial fibrillary acidic protein and the oligodendrocytic marker 2',3'-cyclic nucleotide 3'-phosphodiesterase. Compared with neurospheres cultured in suspension, the differentiation potential of neural stem cells cultured in collagen gels increased, with the formation of neurons at an early stage. Our results show that the three-dimensional collagen gel culture system is superior to suspension culture in the proliferation, differentiation and process outgrowth of neural stem cells.
文摘Penehyclidine hydrochloride can promote microcirculation and reduce vascular permeability. However, the role of penehyclidine hydrochlodde in cerebral ischemia-reperfusion injury remains unclear. In this study, in vivo middle cerebral artery occlusion models were established in experimental rats, and penehyclidine hydrochloride pretreatment was given via intravenous injection prior to model establishment. Tetrazolium chloride, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and immunohistochemical staining showed that, penehyclidine hydrochloride pretreatment markedly attenuated neuronal histopathological changes in the cortex, hippocampus and striatum, reduced infarction size, increased the expression level of BcI-2, decreased the expression level of caspase-3, and inhibited neuronal apoptosis in rats with cerebral ischemia-reperfusion injury. Xanthine oxidase and thiobarbituric acid chromogenic results showed that penehyclidine hydrochloride upregulated the activity of superoxide dismutase and downregulated the concentration of malondialdehyde in the ischemic cerebral cortex and hippocampus, as well as reduced the concentration of extracellular excitatory amino acids in rats with cerebral ischemia-reperfusion injury. In addition, penehyclidine hydrochloride inhibited the expression level of the NR1 subunit in hippocampal nerve cells in vitro following oxygen-glucose deprivation, as detected by PCR. Experimental findings indicate that penehyclidine hydrochloride attenuates neuronal apoptosis and oxidative stress injury after focal cerebral ischemia-reperfusion, thus exerting a neuroprotective effect.
基金supported by Liaoning Social Development Key Projects of Scientific and Technological Department of Liaoning Province, No. 2012225019
文摘In this study, primary cultured cerebral cortical neurons of Sprague-Dawley neonatal rats were treated with 0.25, 0.5, and 1.0 μM calmodulin-dependent protein kinase II inhibitor KN-93 after 50 μM N-methyI-D-aspartic acid-induced injury. Results showed that, compared with N-methyi-D- aspartic acid-induced injury neurons, the activity of cells markedly increased, apoptosis was significantly reduced, leakage of lactate dehydrogenase decreased, and intracellular Ca2+ concentrations in neurons reduced after KN-93 treatment. The expression of caspase-3, phosphorylated calmodulin-dependent protein kinase II and total calmodulin-dependent protein kinase II protein decreased after KN-93 treatment. And the effect was apparent at a dose of 1.0 pM KN-93. Experimental findings suggest that KN-93 can induce a dose-dependent neuroprotective effect, and that the underlying mechanism may be related to the down-regulation of caspase-3 and calmodulin- dependent protein kinase II expression.
基金supported by the National Natural Science Foundation of China,No.81071070
文摘Previous studies addressing the protection of tea polyphenols against cerebral ischemia/ reperfusion injury often use focal cerebral ischemia models, and the optimal dose is not unified. In this experiment, a cerebral ischemia/reperfusion injury rat model was established using a modified four-vessel occlusion method. Rats were treated with different doses of tea polyphenols (25, 50, 100, 150, 200 mg/kg) via intraperitoneal injection. Results showed that after 2, 6, 12, 24, 48 and 72 hours of reperfusion, peroxide dismutase activity and total antioxidant capacity in brain tissue gradually increased, while malondialdehyde content gradually decreased after tea polyphenol intervention. Tea polyphenols at 200 mg/kg resulted in the most apparent changes. Terminal deoxynucleotidyl transferase-mediated nick end labeling and flow cytometry showed that 200 mg/kg tea polyphenols significantly reduced the number and percentage of apoptotJc cells in the hippocampal CA1 region of rats after cerebral ischemia/reperfusion injury. The open field test and elevated plus maze experiments showed that tea polyphenols at 200 mg/kg strengthened exploratory behavior and reduced anxiety of cerebral ischemia/reperfusion injured rats. Experimental findings indicate that tea polyphenols protected rats against cerebral ischemia/ reperfusion injury and 200 mg/kg is regarded as the optimal dose.
基金sponsored by the Science and Technology Foundation of Tianjin Health Bureau,No. 2010ky04the Application Basis and Front Technology Projects of Tianjin (Science and Technology Foundation of Tianjin),No.12JCYBJC18000
文摘Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, No. 2012R1A1A4A01001873
文摘Transtentorial herniation is one of the causes of motor weakness in traumatic brain injury. In this study, we report on a patient who underwent decompressive craniectomy due to traumatic intracerebral hemorrhage. Brain CT images taken after surgery showed intracerebral hemorrhage in the left fronto-temporal lobe and left transtentorial herniation. The patient presented with severe paralysis of the right extremities at the time of intracerebral hemorrhage onset, but the limb motor function recovered partially at 6 months after onset and to nearly normal level at 27 months. Through diffusion tensor tractography, the left corticospinal tract was disrupted below the cerebral peduncle at 1 month after onset and the disrupted left corticospinal tract was reconstructed at 27 months. These findings suggest that recovery of limb motor function in a patient with traumatic transtentorial herniation can come to be true by recovery of corticospinal tract.