期刊文献+
共找到3,074篇文章
< 1 2 154 >
每页显示 20 50 100
Biomimetic natural biomaterials for tissue engineering and regenerative medicine:new biosynthesis methods,recent advances,and emerging applications 被引量:5
1
作者 Shuai Liu Jiang-Ming Yu +11 位作者 Yan-Chang Gan Xiao-Zhong Qiu Zhe-Chen Gao Huan Wang Shi-Xuan Chen Yuan Xiong Guo-Hui Liu Si-En Lin Alec McCarthy Johnson V.John Dai-Xu Wei Hong-Hao Hou 《Military Medical Research》 SCIE CAS CSCD 2024年第1期50-79,共30页
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds bas... Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering(TE)and regenerative medicine.In contrast to conventional biomaterials or synthetic materials,biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix(ECM).Additionally,such materials have mechanical adaptability,micro-structure interconnectivity,and inherent bioactivity,making them ideal for the design of living implants for specific applications in TE and regenerative medicine.This paper provides an overview for recent progress of biomimetic natural biomaterials(BNBMs),including advances in their preparation,functionality,potential applications and future challenges.We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM.Moreover,we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications.Finally,we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field. 展开更多
关键词 Biomimic SCAFFOLD BIOSYNTHESIS Natural biomaterial Tissue engineering
下载PDF
Biomaterials and tissue engineering in traumatic brain injury:novel perspectives on promoting neural regeneration 被引量:2
2
作者 Shihong Zhu Xiaoyin Liu +7 位作者 Xiyue Lu Qiang Liao Huiyang Luo Yuan Tian Xu Cheng Yaxin Jiang Guangdi Liu Jing Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2157-2174,共18页
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ... Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential. 展开更多
关键词 bioactive materials biomaterialS EXOSOMES neural regeneration scaffolds stem cells tissue engineering traumatic brain injury
下载PDF
Functional biomaterials for modulating the dysfunctional pathological microenvironment of spinal cord injury 被引量:1
3
作者 Dezun Ma Changlong Fu +5 位作者 Fenglu Li Renjie Ruan Yanming Lin Xihai Li Min Li Jin Zhang 《Bioactive Materials》 SCIE CSCD 2024年第9期521-543,共23页
Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a ... Spinal cord injury(SCI)often results in irreversible loss of sensory and motor functions,and most SCIs are incurable with current medical practice.One of the hardest challenges in treating SCI is the development of a dysfunctional pathological microenvironment,which mainly comprises excessive inflammation,deposition of inhibitory molecules,neurotrophic factor deprivation,glial scar formation,and imbalance of vascular function.To overcome this challenge,implantation of functional biomaterials at the injury site has been regarded as a potential treatment for modulating the dysfunctional microenvironment to support axon regeneration,remyelination at injury site,and functional recovery after SCI.This review summarizes characteristics of dysfunctional pathological microenvironment and recent advances in biomaterials as well as the technologies used to modulate inflammatory microenvironment,regulate inhibitory microenvironment,and reshape revascularization microenvironment.Moreover,technological limitations,challenges,and future prospects of functional biomaterials to promote efficient repair of SCI are also discussed.This review will aid further understanding and development of functional biomaterials to regulate pathological SCI microenvironment. 展开更多
关键词 Spinal cord injury Dysfunctional pathological microenvironment Functional biomaterials Axon regeneration Functional recovery
原文传递
Biomaterials and emerging technologies for tissue engineering and in vitro models
4
作者 J.Miguel Oliveira Rui L.Reis 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期237-239,共3页
The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into... The latest advances in the field of biomaterials have opened new avenues for scientific breakthroughs in tissue engineer-ing which greatly contributed for the successful translation of tissue engineering products into the market/clinics.Bio-materials are easily processed to become similar to natural extracellular matrix,making them ideal temporary supports for mimicking the three-dimensional(3D)microenvironment required for maintaining the adequate cell/tissue functions both in vitro and in vivo^([1]). 展开更多
关键词 BREAKTHROUGH biomaterialS ENGINEER
下载PDF
Mechanobiomaterials:Mechanics-Guided Design of Epicardial Patch for Treating
5
作者 Huajian Gao 《医用生物力学》 CAS CSCD 北大核心 2024年第S01期1-1,共1页
In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted fu... In recent years,the field of mechanomaterials has emerged at the interface of mechanics,materials science,biology,medicine and data science,where materials are proactively designed or programmed to achieve targeted functionalities by leveraging the fundamental mechanics principles and force-geometry-property relationships.In the biological context,one may likewise introduce mechanobiomaterials as a field with the following goals:(1)proactive design or programming of materials for precisely mediating biomechanical environment of living systems for tissue repair/restoration;(2)proactive control/programming of living systems themselves by an external field via force-structure-function relationships.Here,we will discuss an example of research in mechanobiomaterials on using mechanics to guide the design of acellular epicardial patches for the treatment of myocardial infarction.This technology aims to employ a biocompatible material patch to help reverse left ventricular remodeling and restore heart function after myocardial infarction by increasing the mechanical integrity of damaged heart tissues.However,its application is currently limited by widely scattered therapeutic efficacy.Here,we develop a biomechanics-based simulation platform that allows us to test,design and optimize the performance of an epicardial patch.We show that the widely scattered therapeutic efficacy of this technology can be attributed to a“pre-strain sensitivity”caused by attaching an elastic patch to a dynamically beating heart.To mitigate this challenge,we introduce a viscoelastic epicardial patch,designed at the so-called‘gel point’of the material,that effectively accommodates the cyclic deformation of the myocardium.This then leads to the fabrication and experimentally validated epicardial patch that outperforms all existing ones in restoring heart function after both acute and subacute myocardial infarction in rats.Our study also demonstrates the potential of employing viscoelastic interfaces for better integration of synthetic materials with biological tissues. 展开更多
关键词 PATCH biomaterialS SCATTERED
下载PDF
Advances and applications of biomimetic biomaterials for endogenous skin regeneration
6
作者 Mengyang Wang Yiyue Hong +1 位作者 Xiaobing Fu Xiaoyan Sun 《Bioactive Materials》 SCIE CSCD 2024年第9期492-520,共29页
Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin’s own regenerative potential for self-healing,thereby avoiding the risks of immune rejection and exogeno... Endogenous regeneration is becoming an increasingly important strategy for wound healing as it facilitates skin’s own regenerative potential for self-healing,thereby avoiding the risks of immune rejection and exogenous infection.However,currently applied biomaterials for inducing endogenous skin regeneration are simplistic in their structure and function,lacking the ability to accurately mimic the intricate tissue structure and regulate the disordered microenvironment.Novel biomimetic biomaterials with precise structure,chemical composition,and biophysical properties offer a promising avenue for achieving perfect endogenous skin regeneration.Here,we outline the recent advances in biomimetic materials induced endogenous skin regeneration from the aspects of structural and functional mimicry,physiological process regulation,and biophysical property design.Furthermore,novel techniques including in situ reprograming,flexible electronic skin,artificial intelligence,single-cell sequencing,and spatial transcriptomics,which have potential to contribute to the development of biomimetic biomaterials are highlighted.Finally,the prospects and challenges of further research and application of biomimetic biomaterials are discussed.This review provides reference to address the clinical problems of rapid and high-quality skin regeneration. 展开更多
关键词 ENDOGENOUS HEALING biomaterialS
原文传递
A Review on Silk Fibroin as a Biomaterial in Tissue Engineering
7
作者 Tkhu Chang Le Qian Zhang +3 位作者 Qingdi Qu Wentong Ding Sergej Anatolyevich Lazarev Shuang Pan 《Journal of Biosciences and Medicines》 2024年第3期275-290,共16页
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace... Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine. 展开更多
关键词 Tissue Engineering biomaterial SCAFFOLD SILK Fibroin
下载PDF
Magnesium-based biomaterials for coordinated tissue repair:A comprehensive overview of design strategies,advantages,and challenges
8
作者 Yuan Chen Siming Zhang +8 位作者 Jiaxiang Bai Yao Yang Yingjie Wang Yanling Zhou Wei Jiang Junjie Wang Junchen Zhu Chen Zhu Xianzuo Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3025-3061,共37页
Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,adva... Magnesium-based biomaterials(MBMs)are one of the most promising materials for tissue engineering due to their unique mechanical properties and excellent functional properties.This review describes the development,advantages,and challenges of MBMs for biomedical applications,especially for tissue repair and regeneration.The history of the use of MBMs from the beginning of the 20th century is traced,and the transformative advances in contemporary applications of MBMs in areas such as orthopedics and cardiovascular surgery are emphasized.The review also provides insight into the signaling pathways affected by MBMs,such as the PI3K/Akt and RANKL/RANK/OPG pathways,which are critical for osteogenesis and angiogenesis.The review advocates that future research should focus on optimizing alloy compositions,surface modification and exploring innovative technologies such as 3D printing to improve the efficacy of MBMs in complex tissue repair.The potential of MBMs to tissue engineering and regenerative medicine is significant,urging further exploration and interdisciplinary collaboration to maximize their therapeutic effects. 展开更多
关键词 Magnesium-based biomaterials Design strategies Functional properties Clinical applications CHALLENGES
下载PDF
Stiffness-tunable biomaterials provide a good extracellular matrix environment for axon growth and regeneration
9
作者 Ronglin Han Lanxin Luo +4 位作者 Caiyan Wei Yaru Qiao Jiming Xie Xianchao Pan Juan Xing 《Neural Regeneration Research》 SCIE CAS 2025年第5期1364-1376,共13页
Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to p... Neuronal growth, extension, branching, and formation of neural networks are markedly influenced by the extracellular matrix—a complex network composed of proteins and carbohydrates secreted by cells. In addition to providing physical support for cells, the extracellular matrix also conveys critical mechanical stiffness cues. During the development of the nervous system, extracellular matrix stiffness plays a central role in guiding neuronal growth, particularly in the context of axonal extension, which is crucial for the formation of neural networks. In neural tissue engineering, manipulation of biomaterial stiffness is a promising strategy to provide a permissive environment for the repair and regeneration of injured nervous tissue. Recent research has fine-tuned synthetic biomaterials to fabricate scaffolds that closely replicate the stiffness profiles observed in the nervous system. In this review, we highlight the molecular mechanisms by which extracellular matrix stiffness regulates axonal growth and regeneration. We highlight the progress made in the development of stiffness-tunable biomaterials to emulate in vivo extracellular matrix environments, with an emphasis on their application in neural repair and regeneration, along with a discussion of the current limitations and future prospects. The exploration and optimization of the stiffness-tunable biomaterials has the potential to markedly advance the development of neural tissue engineering. 展开更多
关键词 ALGINATE axon growth biomaterialS extracellular matrix neural repair neurons NEUROREGENERATION POLYACRYLAMIDE POLYDIMETHYLSILOXANE stiffness
下载PDF
Treatment of spinal cord injury with biomaterials and stem cell therapy in non-human primates and humans
10
作者 Ana Milena Silva Olaya Fernanda Martins Almeida +1 位作者 Ana Maria Blanco Martinez Suelen Adriani Marques 《Neural Regeneration Research》 SCIE CAS 2025年第2期343-353,共11页
Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied fo... Spinal cord injury results in the loss of sensory,motor,and autonomic functions,which almost always produces permanent physical disability.Thus,in the search for more effective treatments than those already applied for years,which are not entirely efficient,researches have been able to demonstrate the potential of biological strategies using biomaterials to tissue manufacturing through bioengineering and stem cell therapy as a neuroregenerative approach,seeking to promote neuronal recovery after spinal cord injury.Each of these strategies has been developed and meticulously evaluated in several animal models with the aim of analyzing the potential of interventions for neuronal repair and,consequently,boosting functional recovery.Although the majority of experimental research has been conducted in rodents,there is increasing recognition of the importance,and need,of evaluating the safety and efficacy of these interventions in non-human primates before moving to clinical trials involving therapies potentially promising in humans.This article is a literature review from databases(PubMed,Science Direct,Elsevier,Scielo,Redalyc,Cochrane,and NCBI)from 10 years ago to date,using keywords(spinal cord injury,cell therapy,non-human primates,humans,and bioengineering in spinal cord injury).From 110 retrieved articles,after two selection rounds based on inclusion and exclusion criteria,21 articles were analyzed.Thus,this review arises from the need to recognize the experimental therapeutic advances applied in non-human primates and even humans,aimed at deepening these strategies and identifying the advantages and influence of the results on extrapolation for clinical applicability in humans. 展开更多
关键词 BIOENGINEERING biomaterialS cell therapy humans non-human primates spinal cord injury stem cell therapy
下载PDF
Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials 被引量:1
11
作者 Zifan Zhao Qin Zhao +6 位作者 Hu Chen Fanfan Chen Feifei Wang Hua Tang Haibin Xia Yongsheng Zhou Yuchun Sun 《International Journal of Oral Science》 SCIE CAS CSCD 2023年第3期411-421,共11页
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essen... Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects.Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials.Previous studies have mainly focused on innate immune cells such as macrophages.In our previous work,we found that T lymphocytes,as adaptive immune cells,are also essential in the osteoinduction procedure.As the most important antigen-presenting cell,whether dendritic cells(DCs)can recognize non-antigen biomaterials and participate in osteoinduction was still unclear.In this study,we found that surgical trauma associated with materials implantation induces necrocytosis,and this causes the release of high mobility group protein-1(HMGB1),which is adsorbed on the surface of bone substitute materials.Subsequently,HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells,and the inflammatory response was activated.Finally,activated DCs release regeneration-related chemokines,recruit mesenchymal stem cells,and initiate the osteoinduction process.This study sheds light on the immune-regeneration process after bone substitute materials implantation,points out a potential direction for the development of bone substitute materials,and provides guidance for the development of clinical surgical methods. 展开更多
关键词 IMPLANTATION biomaterialS release
下载PDF
Additive manufacturing of sustainable biomaterials for biomedical applications 被引量:2
12
作者 Zia Ullah Arif Muhammad Yasir Khalid +5 位作者 Reza Noroozi Mokarram Hossain Hao Tian Harvey Shi Ali Tariq Seeram Ramakrishna Rehan Umer 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第3期1-36,共36页
Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including ... Biopolymers are promising environmentally benign materials applicable in multifarious applications.They are especially favorable in implantable biomedical devices thanks to their excellent unique properties,including bioactivity,renewability,bioresorbability,biocompatibility,biodegradability and hydrophilicity.Additive manufacturing(AM)is a flexible and intricate manufacturing technology,which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems.Three-dimensional(3D)printing of these sustainable materials is applied in functional clinical settings including wound dressing,drug delivery systems,medical implants and tissue engineering.The present review highlights recent advancements in different types of biopolymers,such as proteins and polysaccharides,which are employed to develop different biomedical products by using extrusion,vat polymerization,laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional(4D)bioprinting techniques.It also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds,and addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AMtechniques.Ideally,there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas.We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future. 展开更多
关键词 3D printing Biopolymers BIOMEDICAL Tissue engineering Sustainable biomaterials Additive manufacturing
下载PDF
Simulating traumatic brain injury in vitro:developing high throughput models to test biomaterial based therapies 被引量:3
13
作者 Raja Haseeb Basit Jessica Wiseman +1 位作者 Farhana Chowdhury Divya Maitreyi Chari 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第2期289-292,共4页
Traumatic brain injuries are serious clinical incidents associated with some of the poorest outcomes in neurological practice.Coupled with the limited regenerative capacity of the brain,this has significant implicatio... Traumatic brain injuries are serious clinical incidents associated with some of the poorest outcomes in neurological practice.Coupled with the limited regenerative capacity of the brain,this has significant implications for patients,carers,and healthcare systems,and the requirement for life-long care in some cases.Clinical treatment currently focuses on limiting the initial neural damage with longterm care/support from multidisciplinary teams.Therapies targeting neuroprotection and neural regeneration are not currently available but are the focus of intensive research.Biomaterial-based interventions are gaining popularity for a range of applications including biomolecule and drug delive ry,and to function as cellular scaffolds.Experimental investigations into the development of such novel therapeutics for traumatic brain injury will be critically underpinned by the availability of appropriate high thro ughput,facile,ethically viable,and pathomimetic biological model systems.This represents a significant challenge for researchers given the pathological complexity of traumatic brain injury.Specifically,there is a concerted post-injury response mounted by multiple neural cell types which includes microglial activation and astroglial scarring with the expression of a range of growth inhibito ry molecules and cytokines in the lesion environment.Here,we review common models used for the study of traumatic brain injury(ranging from live animal models to in vitro systems),focusing on penetrating traumatic brain injury models.We discuss their relative advantages and drawbacks for the developmental testing of biomaterial-based therapies. 展开更多
关键词 astroglial scar biomaterial cortical culture in vitro model microglial infiltration multicellular model penetrating injury SCAFFOLD traumatic brain injury
下载PDF
Osteoimmunity-regulating biomaterials promote bone regeneration
14
作者 Zongtai Liu Jin Zhang +1 位作者 Changfeng Fu Jianxun Ding 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第1期1-3,共3页
Osteoimmunomodulation is a fascinating approach for balancing osteoimmune through regulating reciprocal interactions between bone cells and immune cells[1].Implantation of the osteoimmunity-regulating biomaterials reg... Osteoimmunomodulation is a fascinating approach for balancing osteoimmune through regulating reciprocal interactions between bone cells and immune cells[1].Implantation of the osteoimmunity-regulating biomaterials regulates osteoimmune conditions in the host dynamically,thus intensifying osseointegration under physiological microenvironments[1].This perspective presents a brief overview of osteoimmunity-regulating biomaterials for augmenting bone regeneration based on a recently published study by our research team[2]. 展开更多
关键词 IMMUNITY biomaterialS BONE
下载PDF
Development of micro/nanostructured‒based biomaterials with biomedical applications
15
作者 AFAF ALHARTHI 《BIOCELL》 SCIE 2023年第8期1743-1755,共13页
Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great ... Natural biomaterials are now frequently used to build biocarrier systems,which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect.Biomaterials and polymers are of great importance in the synthesis of nanomaterials.The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi,algae,bacteria,and medicinal plants.They are also biodegradable,compatible with neighborhoods,and non-toxic.Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds,matrices,composites,and interpenetrating polymer networks employing microtechnology and nanotechnology.This review highlights how microengineered and nanoengineered biomaterials are utilized to produce efficient drug-delivery systems and biomedical and biological therapies and how innovative sources of biomaterials have been identified. 展开更多
关键词 Micro/Nanoparticles biomaterialS Green synthesis MICROORGANISMS ALGAE Medicinal plants
下载PDF
Topology optimization of microstructure and selective laser meltingfabrication for metallic biomaterial scaffolds 被引量:12
16
作者 肖冬明 杨永强 +2 位作者 苏旭彬 王迪 罗子艺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2554-2561,共8页
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ... The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds. 展开更多
关键词 topology optimization selective laser melting (SLM) MICROSTRUCTURE metallic biomaterial scaffolds
下载PDF
Implant biomaterials: A comprehensive review 被引量:19
17
作者 Monika Saini Yashpal Singh +2 位作者 Pooja Arora Vipin Arora Krati Jain 《World Journal of Clinical Cases》 SCIE 2015年第1期52-57,共6页
Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should... Appropriate selection of the implant biomaterial is a key factor for long term success of implants. The biologic environment does not accept completely any material so to optimize biologic performance, implants should be selected to reduce the negative biologic response while maintaining adequate function. Every clinician should always gain a thorough knowledge about thedifferent biomaterials used for the dental implants. This article makes an effort to summarize various dental biomaterials which were used in the past and as well as the latest material used now. 展开更多
关键词 biomaterialS ZIRCONIUM Surface ROUGHNESS CERAMIC Corrosion
下载PDF
Role and prospects of regenerative biomaterials in the repair of spinal cord injury 被引量:19
18
作者 Shuo Liu Yuan-Yuan Xie Bin Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第8期1352-1363,共12页
Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials ... Axonal junction defects and an inhibitory environment after spinal cord injury seriously hinder the regeneration of damaged tissues and neuronal functions. At the site of spinal cord injury, regenerative biomaterials can fill cavities, deliver curative drugs, and provide adsorption sites for transplanted or host cells. Some regenerative biomaterials can also inhibit apoptosis, inflammation and glial scar formation, or further promote neurogenesis, axonal growth and angiogenesis. This review summarized a variety of biomaterial scaffolds made of natural, synthetic, and combined materials applied to spinal cord injury repair. Although these biomaterial scaffolds have shown a certain therapeutic effect in spinal cord injury repair, there are still many problems to be resolved, such as product standards and material safety and effectiveness. 展开更多
关键词 nerve REGENERATION spinal CORD injury REGENERATIVE biomaterialS scaffolds tissue engineering REGENERATION transplantation combination functional recovery REPAIR strategy MICROENVIRONMENT neural REGENERATION
下载PDF
Fracture Toughness Properties of Three Different Biomaterials Measured by Nanoindentation 被引量:5
19
作者 Ji-yu Sun Jin Tong 《Journal of Bionic Engineering》 SCIE EI CSCD 2007年第1期11-17,共7页
The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulu... The fracture toughness of hard biomaterials, such as nacre, bovine hoof wall and beetle cuticle, is associated with fibrous or lamellar structures that deflect or stop growing cracks. Their hardness and reduced modulus were measured by using a nanoindenter in this paper. Micro/nanoscale cracks were generated by nanoindentation using a Berkovich tip. Nanoindentation of nacre and bovine hoof wall resulted in pile-up around the indent. It was found that the fracture toughness (Kc) of bovine hoof wall is the maximum, the second is nacre, and the elytra cuticle of dung beetle is the least one. 展开更多
关键词 biomimetics BIONICS biomaterialS NANOINDENTATION laminated structure fracture toughness
下载PDF
Advances in regenerative therapies for spinal cord injury:a biomaterials approach 被引量:8
20
作者 Magdalini Tsintou Kyriakos Dalamagkas Alexander Marcus Seifalian 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期726-742,共17页
Spinal cord injury results in the permanent loss of function, causing enormous personal, social and economic problems. Even though neural regeneration has been proven to be a natural mech- anism, central nervous syste... Spinal cord injury results in the permanent loss of function, causing enormous personal, social and economic problems. Even though neural regeneration has been proven to be a natural mech- anism, central nervous system repair mechanisms are ineffective due to the imbalance of the inhibitory and excitatory factors implicated in neuroregeneration. Therefore, there is growing re- search interest on discovering a novel therapeutic strategy for effective spinal cord injury repair. To this direction, cell-based delivery strategies, biomolecule delivery strategies as well as scaf- fold-based therapeutic strategies have been developed with a tendency to seek for the answer to a combinatorial approach of all the above. Here we review the recent advances on regenerativel neural engineering therapies for spinal cord injury, aiming at providing an insight to the most promising repair strategies, in order to facilitate future research conduction. 展开更多
关键词 tissue engineering NEUROREGENERATION repair central nervous system biomaterial regenerative medicine nanotechnology spinal cord injury
下载PDF
上一页 1 2 154 下一页 到第
使用帮助 返回顶部