Single-component anode materials can barely satisfy the growing demand for next-generation Li-ion batteries with higher capacity and cyclability. Thus developing multi-component synergistic electrodes has become a cri...Single-component anode materials can barely satisfy the growing demand for next-generation Li-ion batteries with higher capacity and cyclability. Thus developing multi-component synergistic electrodes has become a critical issue. Herein, inspired by natural corn, a ternary hierarchical self-supported array design is proposed. Based on a sequential transformation route, Si/C-modified C0304 nanowire arrays are constructed on 3D Ni foams to form a binder-free integrated electrode. Specifically, an ionic liquid-assisted electrodeposition strategy is employed to prepare discrete ultrafine Si nanoparticles on nanoscale array substrates, which follow the Volmer-Weber island growth mode. In this corn-mimetic system, kernel-like Si nanoparticles and a husk-like carbon coating layer function as enhancing and protecting units, respectively, to improve the capacity and stability of the cobalt oxide basic unit. Taking advantage of a synergistic effect, the ternary nanoarray anode achieves a significant performance enhancement compared to pristine Co304, showing a special capacity as high as -1,000 mAh·g^-1 at 100 mA·g^-1. By extending this corn-mimetic hierarchical array design to other basic, enhancing, and protecting units, new ideas for constructing synergistic nano-architectures for energy conversion and storage field are developed.展开更多
基金Acknowledgements This work was supported by National Natural Science Foundation of China (Nos. 21276257, 91534109 and 91434203), the "Strategic Priority Research Program" of the Chinese Academy of Sciences (No. XDA09010103) and National Key Projects for Fundamental Research and Development of China (No. 2016YFB0100104).
文摘Single-component anode materials can barely satisfy the growing demand for next-generation Li-ion batteries with higher capacity and cyclability. Thus developing multi-component synergistic electrodes has become a critical issue. Herein, inspired by natural corn, a ternary hierarchical self-supported array design is proposed. Based on a sequential transformation route, Si/C-modified C0304 nanowire arrays are constructed on 3D Ni foams to form a binder-free integrated electrode. Specifically, an ionic liquid-assisted electrodeposition strategy is employed to prepare discrete ultrafine Si nanoparticles on nanoscale array substrates, which follow the Volmer-Weber island growth mode. In this corn-mimetic system, kernel-like Si nanoparticles and a husk-like carbon coating layer function as enhancing and protecting units, respectively, to improve the capacity and stability of the cobalt oxide basic unit. Taking advantage of a synergistic effect, the ternary nanoarray anode achieves a significant performance enhancement compared to pristine Co304, showing a special capacity as high as -1,000 mAh·g^-1 at 100 mA·g^-1. By extending this corn-mimetic hierarchical array design to other basic, enhancing, and protecting units, new ideas for constructing synergistic nano-architectures for energy conversion and storage field are developed.