Phosphorus and nutrient recovery from wastewater as mineral salts can support local replenishment of fertilisers and reduce mining,contributing to the circular economy.Wastewater and related streams are rich in nutrie...Phosphorus and nutrient recovery from wastewater as mineral salts can support local replenishment of fertilisers and reduce mining,contributing to the circular economy.Wastewater and related streams are rich in nutrients,however;there is need to develop bio-based processes to recover them.This study investigates the fractions of phosphorus(P)used by Brevibacterium antiquum to form struvite biominerals(bio-struvite)in wastewater sludge dewatering liquors.After 72h of incubation,25.6 mg P/L were recovered as bio-struvite from 12.4 mg P/L organic plus condensed P and 13.2 mg P/L of orthophosphate.The potential of sludge dewatering liquors to recover nutrients as struvite was investigated by characterising ten types of sludge liquors(originating from primary,secondary sludge,feed to anaerobic digester and digestate,from 3 types of wastewater treatment plants)for their P fractions together with other parameters relevant for B.antiquum growth.Results indicated that liquors obtained from primary sludge,feed to anaerobic digesters and digestate were the most suitable to produce biostruvite,as these were found to frequently have a high content of organic and condensed P,between to 276-732 mg P/L.Liquors,from all the investigated sites,presented a higher potential for bio-struvite production than with conventional struvite precipitation.This study demonstrated that B.antiquum could convert organic and condensed P into bio-struvite,and this opens up a completely new way to recover forms of phosphorus that are not typically available for nutrient recovery in a single process.展开更多
The deep-sea clam Calyptogena marissinica is widely distributed in the Haima cold seep ecosystem on the northwes-tern slope of the South China Sea with low pH values,low temperature and high pressure.Limited informati...The deep-sea clam Calyptogena marissinica is widely distributed in the Haima cold seep ecosystem on the northwes-tern slope of the South China Sea with low pH values,low temperature and high pressure.Limited information is available on the biomineralization of this species.In this research,we generated a comprehensive transcript dataset of C.marissinica’s mantle tissue,and a total of 19821 unigenes were assembled.Fourteen shell matrix proteins(SMP)-related genes were identified.The qPCR results showed that four out of six prismatic matrix genes(MSP2,MSP5,prisilkin-39,and shematrin),four out of the six nacreous matrix genes(perlucin,pif,pif97,and papilin),and two extrapallial fluid proteins(SPARC and calmodulin)were significantly expressed in the mantle.Both the nacreous and the prismatic layers are chrysanthemum-shaped,which are stacked on the top of each other to form a laminated nacreous structure.The alignment and phylogenetic analysis of MSP-5,Prisilkin-39,Perlucin,and Pif homologues showed that some amino acids of C.marissinica that differed from those detected in other molluscs may cause the different shape of the nacreous and prismatic layers,but do not lead to a change in the species’evolutionary status.These results indicated the conservation of the functions of SMP-related genes in C.marissinica,and the specific shape of the prismatic and nacreous layers of this deep-sea mollusc,which will contribute to the research on the molecular regulation mechanisms of biomineralization in C.marissinica and provide a new perspective to investigate biomineralization in deep-sea clams in general.展开更多
We synthesized BiVO_(4)mesocrystals with ordered assembly structure,and studied the structural order and the relationship between the photodegradation of Rhodamine B.Au nanoparticles(NPs)were successfully loaded onto ...We synthesized BiVO_(4)mesocrystals with ordered assembly structure,and studied the structural order and the relationship between the photodegradation of Rhodamine B.Au nanoparticles(NPs)were successfully loaded onto Meso-BiVO_(4)by light-assisted induction,and Cd nanoparticles were further selected to be deposited on Au nanoparticles to form Z-scheme photocatalyst Meso-BiVO_(4)-Au-CdS heterostructures.We try and propose to analyze its ordered assembly structure by XRD for the first time.The results show that Meso-BiVO_(4)is a mesocrystal with highly exposed(001)plane and directional assembly structure.The charge separation efficiency of all samples was studied by PL spectroscopy.The results show that the Z-scheme Meso-BiVO_(4)-Au-CdS can promote the charge separation and obtain the best carrier separation efficiency.Thus,it has the best photocatalytic activity in the experiment of photocatalytic degradation of rhodamine B.The main active species in the degradation process were confirmed by free radical trapping experiment,and the degradation mechanism was put forward.展开更多
Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chl...Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3).展开更多
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavio...Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein-mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure-function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbiditv associated with tooth loss.展开更多
Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate d...Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.展开更多
A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were:...A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.展开更多
The present work explored effects of laser surface melting on microstructure and surface topography evolution in AZ31B magnesium alloy.Thermokinetic effects experienced by the material during laser surface melting wer...The present work explored effects of laser surface melting on microstructure and surface topography evolution in AZ31B magnesium alloy.Thermokinetic effects experienced by the material during laser surface melting were simulated using a multiphysics finite element model.Microstructure and phase evolution were examined using scanning electron microscopy,X-ray diffraction,and electron back scatter diffraction.Surface topography was evaluated using white light interferometry.The interaction of surface melted samples with simulated body fluid was monitored by contact angle measurements and immersion studies up to 7 days.Laser surface melting led to formation of a refined microstructure with predominantly basal crystallographic texture.Concurrently,the amount ofβphase(Mg_(17)Al_(12))increased with an increase in the laser fluence.βphase preferentially decorated the cell boundaries.In terms of topography,the surface became progressively rougher with an increase in laser fluence.As a result,upon immersion in simulated body fluid,the laser surface melted samples showed an improved wettability,corrosion resistance,and precipitation of mineral having composition closer to the hydroxyapatite bone mineral compared to the untreated sample.展开更多
The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. ...The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. Therefore the growth of pure HAp crystals was accelerated. Moreover, the positive headgroups of the organic film could act as recognized nucleation sites and orient the growth of HAp crystals along the <0001> direction.展开更多
Goethite, especially biogenic goethite, has high specific surface area and great capacity for the adsorption of many contaminants including metal ions and organic chelates. Chromium is a redox actively toxic metal ion...Goethite, especially biogenic goethite, has high specific surface area and great capacity for the adsorption of many contaminants including metal ions and organic chelates. Chromium is a redox actively toxic metal ion that exists as either Cr^Ⅲ or Cr^Ⅵ in nature, and as such it is essential to understand its behavior of adsorption on natural goethite mineralized by iron bacteria, as Gallionella and Leptothrix in water body. The adsorption of Cr^3+ and Cr^Ⅵ on naturally biomineralized goethite is studied in this paper. The results show that both Langmuir and Freundlich adsorption isothermal models are able to accurately describe the adsorption of these two ions. Investigation of SEM/EDS, TEM/EDS indicates that the two ions do not adsorb homogeneously on goethite owing to the different microstructures of goethite, and that the microspherical goethite has a greater adsorption capacity for chromium ions than the helical one. XPS data show that redox reaction of chromium on the surface of biomineralized goethite takes place in the adsorption of both Cr^3+ and Cr^Ⅵ. The CrvI adsorbed on biogoethite is much easier to transform into CrIII than the oxidization of Cr^Ⅲ on the bio-goethite.展开更多
A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in...A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater.展开更多
The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environme...The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environment.In the present work,surface modification of Mg-Ca binary alloy by acid pickling for better biomineralization and controlled biodegradation is explored.The corrosion rates of nitric and phosphoric acid treated samples were analysed by conducting electrochemical corrosion tests.In vitro degradation behaviour was studied using immersion test in simulated body fluid(SBF).The sample surfaces were characterized using scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).It is seen that acid pickling leads to significant improvement in biomineralization and develop in situ calcium phosphate(Ca P)coating on the sample surfaces.In addition,the treated samples recorded a reduced degradation rate in the SBF compared to untreated samples.Thus,acid pickling is suggested as an effective surface treatment method to tailor the biomineralization and degradation behaviour of the Mg-Ca alloy in the physiological environment.展开更多
Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-siz...Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-sized crystal particles of magnetic iron minerals,which are only synthesized in lowoxygen environments.Although the mechanism of aerobic repression for magnetosome biomineralization has not yet fully understood,a series of studies have verified that redox modulation is pivotal for magnetosome formation.In this review,these advances in redox modulation for magnetosome biosynthesis are highlighted,mainly including respiration pathway enzymes,specific magnetosome-associated redox proteins,and oxygen-or nitrate-sensing regulators.Furthermore,their relationship during magnetosome biomineralization is discussed to give insight into redox control and biomineralization and inspire potential solutions for the application of respiration pathways to improve the yields of magnetosome.展开更多
The latest progress in mineral processing in China is described. It is also pointed out that the existing technology can not meet the needs of economic development. The combined challenges of poor resources, economica...The latest progress in mineral processing in China is described. It is also pointed out that the existing technology can not meet the needs of economic development. The combined challenges of poor resources, economical benefits and environmental pollution issues require further research to upgrade the separation efficiency economically. The methods of mineral processing should play a more important part in waste treatment such as wastewater treatment, the remediation of contaminated soil and the recycling of wastes. Biomineral technology will be utilised in the near future.展开更多
Pyritic stromatolite, a rich pyrite ore, is scattered as reef masses in sedex deposits of the Proterozoic Yanshan rift trough. The pyritic stromatolite consists of a core and alternating concentric rims of light collo...Pyritic stromatolite, a rich pyrite ore, is scattered as reef masses in sedex deposits of the Proterozoic Yanshan rift trough. The pyritic stromatolite consists of a core and alternating concentric rims of light colloidal pyrite and dark organic materials. The concentric rims are cemented together by trichomes highly similar to the trichomic microorganisms inhabiting substantively around the black chimneys on the current sea beds while the core is composed chiefly of groups of thermophilous sulphur bacteria. Biomarkers for the molecules of pyritic stromatolite include pristane, phytane, regular isoprenoids paraffin, methyl-heptadecyl, and so on. This study reveals the existence of methane-yielding bacteria in the pyritic stromatolite and reflects the evolution of thermophilous thallophyta.展开更多
Research on the biomineralization in modern seafloor hydrothermal systems is conducive to unveiling the mysteries of the early Earth’s history, life evolution, subsurface biosphere and microbes in outer space. The hy...Research on the biomineralization in modern seafloor hydrothermal systems is conducive to unveiling the mysteries of the early Earth’s history, life evolution, subsurface biosphere and microbes in outer space. The hydrothermal biomineralization has become a focus of geo-biological research in the last decade, since the introduction of the microelectronic technology and molecular biology technology. Microorganisms play a critical role in the formations of oxide/hydroxides (e.g. Fe, Mn, S and Si oxide/hydroxides) and silicates on the seafloor hydrothermal systems globally. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms is regarded as a nexus between the geosphere and the biosphere, and as an essential complement of bioscience and geology. In this paper, we summarize the research progress of hydrothermal biomineralization, including the biogenic minerals, the microbial biodiversity, and also the interactions between minerals and microorganisms. In the foreseeable future, the research on hydrothermal biomineralization will inspire the development of geosciences and biosciences and thus enrich our knowledge of the Earth’s history, life evolution and even astrobiology.展开更多
Human dental enamel forms over a period of 2 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense ameloge...Human dental enamel forms over a period of 2 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin rnatrix in combination with a pro- grammable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that amelobtasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process ofamelogenesis.展开更多
Large amounts of microfossil records discovered in the seafloor black smoker chimney are reported from the Okinawa Trough. They are well preserved and can be divided into four types of filamentous microfossils. It sug...Large amounts of microfossil records discovered in the seafloor black smoker chimney are reported from the Okinawa Trough. They are well preserved and can be divided into four types of filamentous microfossils. It suggests that the fossils may be derived from sulfur or iron oxidation chemolithotrophic prokaryotes and fungi. Based on the comparison studies of the microbial mineralization processes, two steps of biomineralization were hypothesized: (1) biology controlled mineralization; and (2) biology induced mineralization. At the early stage of the mineralization, the biology controlling mineralization is dominating; at the later stage, the biology inducing mineralization is the main mechanism. The composition of the fluids and the species of the microbes will determine the types of the minerals formed.展开更多
K16 and RGD-containing peptide was used to modify the surface of three-dimensional PLGA-(ASP-PEG) matrix, then the modified PLGA-(ASP-PEG) was incubated in modified simulated body fluid (SBF). The biomineralizat...K16 and RGD-containing peptide was used to modify the surface of three-dimensional PLGA-(ASP-PEG) matrix, then the modified PLGA-(ASP-PEG) was incubated in modified simulated body fluid (SBF). The biomineralization of the modified PLGA- (ASP-PEG) was explored, and the peptide was synthesized with solid phase synthesis technology and linked cova-lently to PLGA-(ASP-PEG) through cross-linker (Sulfo-LC-SPDP), which was characterized with XPS. The modified PLGA-(ASP-PEG) (Experiment group, EG) and PLGA-(ASP-PEG) (Control group, CG) were all incubated into SBF for 10 d, and the growth of hydroxyapatite (HA) nanocrys-tals was confirmed with XRD, EDS and SEM. HPLC shows that peptide purity is 94.13%, while MS analysis shows that molecular value of peptide is 2741.26. Binding energy of the sulphur in EG was 164 eV is detected by XPS, and the ratio of carbon and sulphur is 99.746:0.1014. SEM analysis demonstrates the better growth of bonelike HA nanocrystals in EG than that in CG. The component of mineral in EG consisted mainly of hydroxyapatite containing low crystalline nanocrystals, and the Ca/P ratio is about 1.60, which is similar to that of natural bone, while the Ca/P ratio in CG is 1.52. PLGA-(ASP-PEG) modified with peptide provided enough functional groups for biomineralization, and possessed the bonelike structure.展开更多
基金the financial support and contribution from Severn Trent Water Ltd(Coventry,UK)the financial support from POPH/FSE as a PhD grant(SFRH/BD/84116/2012)awarded by the Fundacao para a Ciencia e Tecnologia(FCT,Portugal).
文摘Phosphorus and nutrient recovery from wastewater as mineral salts can support local replenishment of fertilisers and reduce mining,contributing to the circular economy.Wastewater and related streams are rich in nutrients,however;there is need to develop bio-based processes to recover them.This study investigates the fractions of phosphorus(P)used by Brevibacterium antiquum to form struvite biominerals(bio-struvite)in wastewater sludge dewatering liquors.After 72h of incubation,25.6 mg P/L were recovered as bio-struvite from 12.4 mg P/L organic plus condensed P and 13.2 mg P/L of orthophosphate.The potential of sludge dewatering liquors to recover nutrients as struvite was investigated by characterising ten types of sludge liquors(originating from primary,secondary sludge,feed to anaerobic digester and digestate,from 3 types of wastewater treatment plants)for their P fractions together with other parameters relevant for B.antiquum growth.Results indicated that liquors obtained from primary sludge,feed to anaerobic digesters and digestate were the most suitable to produce biostruvite,as these were found to frequently have a high content of organic and condensed P,between to 276-732 mg P/L.Liquors,from all the investigated sites,presented a higher potential for bio-struvite production than with conventional struvite precipitation.This study demonstrated that B.antiquum could convert organic and condensed P into bio-struvite,and this opens up a completely new way to recover forms of phosphorus that are not typically available for nutrient recovery in a single process.
基金supported by the Major Project of Basic and Applied Basic Research of Guangdong Province(No.2019B030302004)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030295)the Science and Technology Planning Project of Guangdong Province,China(No.2020B1212060058).
文摘The deep-sea clam Calyptogena marissinica is widely distributed in the Haima cold seep ecosystem on the northwes-tern slope of the South China Sea with low pH values,low temperature and high pressure.Limited information is available on the biomineralization of this species.In this research,we generated a comprehensive transcript dataset of C.marissinica’s mantle tissue,and a total of 19821 unigenes were assembled.Fourteen shell matrix proteins(SMP)-related genes were identified.The qPCR results showed that four out of six prismatic matrix genes(MSP2,MSP5,prisilkin-39,and shematrin),four out of the six nacreous matrix genes(perlucin,pif,pif97,and papilin),and two extrapallial fluid proteins(SPARC and calmodulin)were significantly expressed in the mantle.Both the nacreous and the prismatic layers are chrysanthemum-shaped,which are stacked on the top of each other to form a laminated nacreous structure.The alignment and phylogenetic analysis of MSP-5,Prisilkin-39,Perlucin,and Pif homologues showed that some amino acids of C.marissinica that differed from those detected in other molluscs may cause the different shape of the nacreous and prismatic layers,but do not lead to a change in the species’evolutionary status.These results indicated the conservation of the functions of SMP-related genes in C.marissinica,and the specific shape of the prismatic and nacreous layers of this deep-sea mollusc,which will contribute to the research on the molecular regulation mechanisms of biomineralization in C.marissinica and provide a new perspective to investigate biomineralization in deep-sea clams in general.
文摘We synthesized BiVO_(4)mesocrystals with ordered assembly structure,and studied the structural order and the relationship between the photodegradation of Rhodamine B.Au nanoparticles(NPs)were successfully loaded onto Meso-BiVO_(4)by light-assisted induction,and Cd nanoparticles were further selected to be deposited on Au nanoparticles to form Z-scheme photocatalyst Meso-BiVO_(4)-Au-CdS heterostructures.We try and propose to analyze its ordered assembly structure by XRD for the first time.The results show that Meso-BiVO_(4)is a mesocrystal with highly exposed(001)plane and directional assembly structure.The charge separation efficiency of all samples was studied by PL spectroscopy.The results show that the Z-scheme Meso-BiVO_(4)-Au-CdS can promote the charge separation and obtain the best carrier separation efficiency.Thus,it has the best photocatalytic activity in the experiment of photocatalytic degradation of rhodamine B.The main active species in the degradation process were confirmed by free radical trapping experiment,and the degradation mechanism was put forward.
基金the financial support by the National Natural Science Foundation of China(NSFC)(Grant Nos.52178319 and 52108307)the Natural Science Foundation of Fujian Province,China(Grant No.2022J05127).
文摘Calcium salt is an important contributing factor for calcium-based biomineralization.To study the effect of calcium salt on soil biomineralization using crude soybean urease,the calcium salts,including the calcium chloride (CaCl_(2)),calcium acetate ((CH_(3)COO)_(2)Ca) and calcium nitrate (Ca(NO_(3))_(2)),were used to prepare the biotreatment solution to carry out the biomineralization tests in this paper.Two series of biomineralization tests in solution and sand column,respectively,were conducted.Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were performed to determine the microscopic characteristics of the precipitated calcium carbonate (CaCO_(3)) crystals.The experimental results indicate that the biomineralization effect is the best for the CaCl2 case,followed by (CH_(3)COO)_(2)Ca,and worst for Ca(NO_(3))_(2) under the test conditions of this study (i.e.1 mol/L of calcium salt-urea).The mechanism for the effect of the calcium salt on the biomineralization of crude soybean urease mainly involves: (1) inhibition of urease activity,and (2) influence on the crystal size and morphology of CaCO_(3).Besides Ca^(2+) ,the anions in solution can inhibit the activity of crude soybean urease,and NO_(3)− has a stronger inhibitory effect on the urease activity compared with both CH_(3)COO^(−) and Cl^(−) .The co-inhibition of Ca^(2+) and NO_(3)− on the activity of urease is the key reason for the worst biomineralization of the Ca(NO_(3))_(2) case in this study.The difference in biomineralization between the CaCl_(2) and (CH_(3)COO)_(2) Ca cases is strongly correlated with the crystal morphology of the precipitated CaCO_(3).
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.
基金The research was mainly supported by NSF-MRSEC (DMR# 0520567) at the University of Washington (MG, MH, HF, RS, EEO, CT and MS)by NIH,National Institute of Dental and Craniofacial Research grant DE13045 (MLS)+2 种基金grant DE15109 to MJS (The studies described here were completed while MJS was at the University of Washington)JAH was supported by the University of Washington, Warren G. Magnuson Scholars Awardthe NIH,National Institute of Dental and Craniofacial Research Ruth L. Kirschstein Individual pre-doctoral dental scientist fellowship, 5F30DE01752
文摘Cementum is the outer-, mineralized-tissue covering the tooth root and an essential part of the system of periodontal tissue that anchors the tooth to the bone. Periodontal disease results from the destructive behavior of the host elicited by an infectious biofilm adhering to the tooth root and left untreated, may lead to tooth loss. We describe a novel protocol for identifying peptide sequences from native proteins with the potential to repair damaged dental tissues by controlling hydroxyapatite biomineralization. Using amelogenin as a case study and a bioinformatics scoring matrix, we identified regions within amelogenin that are shared with a set of hydroxyapatite-binding peptides (HABPs) previously selected by phage display. One 22-amino acid long peptide regions referred to as amelogenin-derived peptide 5 (ADP5) was shown to facilitate cell-free formation of a cementum-like hydroxyapatite mineral layer on demineralized human root dentin that, in turn, supported attachment of periodontal ligament cells in vitro. Our findings have several implications in peptide-assisted mineral formation that mimic biomineralization. By further elaborating the mechanism for protein control over the biomineral formed, we afford new insights into the evolution of protein-mineral interactions. By exploiting small peptide domains of native proteins, our understanding of structure-function relationships of biomineralizing proteins can be extended and these peptides can be utilized to engineer mineral formation. Finally, the cementomimetic layer formed by ADP5 has the potential clinical application to repair diseased root surfaces so as to promote the regeneration of periodontal tissues and thereby reduce the morbiditv associated with tooth loss.
基金Supported by the National Natural Science Foundation of China(Nos.40972043,41040018,41210104058,21176145,41372108,41302079)the Higher Educational Science and Technology Program of Shandong Province(No.J10LC15)+4 种基金the China Postdoctoral Science Foundation(No.2013M540560)the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province,and SDUST Research Fund(No.2010KYTD103)the Open Project of Key Lab of Marine Bioactive Substance and Modern Analytical Technique,State Oceanic Administration,China(No.MBSMAT-2012-03)the Scientific and Technological Program of Qingdao(No.13-1-4-232-jch)the Domestic Visiting Scholar Program for Young Core Teachers in Shandong Universities,Shandong Province,China
文摘Calcium carbonate (CaCO3) crystals in their preferred orientation were obtained in BG11 culture media inoculated with Synechocystis sp. PCC6803 (inoculated BG11). In this study, the features of calcium carbonate deposition were investigated. Inoculated BGll in different calcium ion concentrations was used for the experimental group, while the BGll culture medium was used for the control group. The surface morphologies of the calcium carbonate deposits in the experimental and control groups were determined by scanning and transmission electron microscopy. The deposits were analyzed by electronic probe micro-analysis, Fourier transform infrared spectrum, X-ray diffraction, thermal gravimetric analysis and differential scanning calorimetry. The results show that the surfaces of the crystals in the experimental group were hexahedral in a scaly pattern. The particle sizes were micrometer-sized and larger than those in the control group. The deposits of the control group contained calcium (Ca), carbon (C), oxygen (O), phosphorus (P), iron (Fe), copper (Cu), zinc (Zn), and other elements. The deposits in the experimental group contained Ca, C, and O only. The deposits of both groups contained calcite. The thermal decomposition temperature of the deposits in the control group was lower than those in the experimental group. It showed that the CaCO3 deposits of the experimental group had higher thermal stability than those of the control group. This may be due to the secondary metabolites produced by the algae cells, which affect the carbonate crystal structure and result in a close-packed structure. The algae cells that remained after thermal weight loss were heavier in higher calcium concentrations in BGll culture media. There may be more calcium- containing crystals inside and outside of these cells. These results shall be beneficial for understanding the formation mechanism of carbonate minerals.
基金the National Science Foundation.USA.(NSF Grant EAR 02-10820)the National Natural ScienceFoundation of China(NSFC Grant No.40173031)+1 种基金the International Cooperative Research Foundation of NSFC(Grant No.2002-40210104086) the Ph.D.Base Foundation of the Ministry of Education of China(Grant No.20020284036).
文摘A simulated experimental reduction of and the synthesis of uraninite by a sulfate-reducing bacteria, Desulfovibrio desulfuricans DSM 642, are first reported. The simulated physicochemical experimental conditions were: 35°C, pH=7.0-7.4, corresponding to the environments of formation of the sandstone-hosted interlayer oxidation-zone type uranium deposits in Xinjiang, NW China. Uraninite was formed on the surface of the host bacteria after a one-week's incubation. Therefore, sulfate-reducing bacteria, which existed extensively in Jurassic sandstone-producing environments, might have participated in the biomineralization of this uranium deposit. There is an important difference in the order- disorder of the crystalline structure between the uraninite produced by Desulfovibrio desulfuricans and naturally occurring uraninite. Long time and slow precipitation and growth of uraninite in the geological environment might have resulted in larger uraninite crystals, with uraninite nanocrystals arranged in order, whereas the experimentally produced uraninite is composed of unordered uraninite nanocrystals which, in contrast, result from the short time span of formation and rapid precipitation and growth of uraninite. The discovery has important implications for understanding genetic significance in mineralogy, and also indicates that in-situ bioremediation of U-contaminated environments and use of biotechnology in the treatment of radioactive liquid waste is being contemplated.
文摘The present work explored effects of laser surface melting on microstructure and surface topography evolution in AZ31B magnesium alloy.Thermokinetic effects experienced by the material during laser surface melting were simulated using a multiphysics finite element model.Microstructure and phase evolution were examined using scanning electron microscopy,X-ray diffraction,and electron back scatter diffraction.Surface topography was evaluated using white light interferometry.The interaction of surface melted samples with simulated body fluid was monitored by contact angle measurements and immersion studies up to 7 days.Laser surface melting led to formation of a refined microstructure with predominantly basal crystallographic texture.Concurrently,the amount ofβphase(Mg_(17)Al_(12))increased with an increase in the laser fluence.βphase preferentially decorated the cell boundaries.In terms of topography,the surface became progressively rougher with an increase in laser fluence.As a result,upon immersion in simulated body fluid,the laser surface melted samples showed an improved wettability,corrosion resistance,and precipitation of mineral having composition closer to the hydroxyapatite bone mineral compared to the untreated sample.
文摘The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. Therefore the growth of pure HAp crystals was accelerated. Moreover, the positive headgroups of the organic film could act as recognized nucleation sites and orient the growth of HAp crystals along the <0001> direction.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.40072015 and 40372028)the National"973"Plan Project(Grant No.2004CB619204).
文摘Goethite, especially biogenic goethite, has high specific surface area and great capacity for the adsorption of many contaminants including metal ions and organic chelates. Chromium is a redox actively toxic metal ion that exists as either Cr^Ⅲ or Cr^Ⅵ in nature, and as such it is essential to understand its behavior of adsorption on natural goethite mineralized by iron bacteria, as Gallionella and Leptothrix in water body. The adsorption of Cr^3+ and Cr^Ⅵ on naturally biomineralized goethite is studied in this paper. The results show that both Langmuir and Freundlich adsorption isothermal models are able to accurately describe the adsorption of these two ions. Investigation of SEM/EDS, TEM/EDS indicates that the two ions do not adsorb homogeneously on goethite owing to the different microstructures of goethite, and that the microspherical goethite has a greater adsorption capacity for chromium ions than the helical one. XPS data show that redox reaction of chromium on the surface of biomineralized goethite takes place in the adsorption of both Cr^3+ and Cr^Ⅵ. The CrvI adsorbed on biogoethite is much easier to transform into CrIII than the oxidization of Cr^Ⅲ on the bio-goethite.
基金Project(18B195)supported by Excellent Youth Project of Hunan Education Department,ChinaProjects(51804353,51704093)supported by the National Natural Science Foundation of China+2 种基金Project(kq1801074)supported by Key Projects of Changsha Science and Technology Plan,ChinaProject(2018JJ4010)supported by Hunan Provincial Natural Science Foundation of China(Joint Funds of Provincial and Zhuzhou Municipal)Project(2018JJ3885)supported by Natural Science Foundation of Hunan Province of China(Science Foundation for Youths)。
文摘A hydroxyl-functionalized magnetic fungus nanocomposite(MFH@GO)was prepared by a simple one-pot method for the removal of Cr(VI)from wastewater.The adsorption behavior of MFH@GO to Cr(VI)in wastewater was discussed in detail.At pH of 5.0 and temperature of 323.15 K,MFH@GO had higher adsorption capacity to Cr(VI)(58.4 mg/g)than the unmodified fungus and GO.Fourier transform infrared spectroscopy(FTIR),X-ray diffraction(XRD),thermogravimetry and differential thermal analysis(TG-DTA),scanning electron microscopy and energy dispersive X-Ray spectroscopy(SEM-EDX)were employed to determine the characteristics of MFH@GO.Results showed that magnetic graphene oxide nanoparticles significantly enhanced the physiochemical properties of the fungi.In addition,the adsorption mechanisms analyses show that Cr(VI)could be reduced and mineralized into ferric chromate in residues.These results suggested that MFH@GO could be used as an promising and alternative biosorbent for removal of Cr(VI)from industrial wastewater.
基金financial grant No.5/4–5/3ORTHO/2019-NCD-I Dt.16–09–2019 from Indian Council of Medical Research(ICMR)the grant from DST-FIST-No.SR/FST/ETI-388/2015,Govt.of India used for setting up 3D Profilometer facility at NIT Calicut。
文摘The mechanical and physical properties of biodegradable magnesium(Mg)alloys make them suitable for temporary orthopaedic implants.The success of these alloys depends on their performance in the physiological environment.In the present work,surface modification of Mg-Ca binary alloy by acid pickling for better biomineralization and controlled biodegradation is explored.The corrosion rates of nitric and phosphoric acid treated samples were analysed by conducting electrochemical corrosion tests.In vitro degradation behaviour was studied using immersion test in simulated body fluid(SBF).The sample surfaces were characterized using scanning electron microscope(SEM),energy dispersive X-ray spectroscopy(EDS),Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).It is seen that acid pickling leads to significant improvement in biomineralization and develop in situ calcium phosphate(Ca P)coating on the sample surfaces.In addition,the treated samples recorded a reduced degradation rate in the SBF compared to untreated samples.Thus,acid pickling is suggested as an effective surface treatment method to tailor the biomineralization and degradation behaviour of the Mg-Ca alloy in the physiological environment.
基金Supported by the National Natural Science Foundation of China(No.41706165)the Fundamental Research Funds of Shandong University(No.2019HW022)。
文摘Magnetotactic bacteria can orientate in the Earth’s magnetic field to search for their preferred microoxic environments,which is achieved by their unique organelles,the magnetosomes.Magnetosomes contain nanometer-sized crystal particles of magnetic iron minerals,which are only synthesized in lowoxygen environments.Although the mechanism of aerobic repression for magnetosome biomineralization has not yet fully understood,a series of studies have verified that redox modulation is pivotal for magnetosome formation.In this review,these advances in redox modulation for magnetosome biosynthesis are highlighted,mainly including respiration pathway enzymes,specific magnetosome-associated redox proteins,and oxygen-or nitrate-sensing regulators.Furthermore,their relationship during magnetosome biomineralization is discussed to give insight into redox control and biomineralization and inspire potential solutions for the application of respiration pathways to improve the yields of magnetosome.
文摘The latest progress in mineral processing in China is described. It is also pointed out that the existing technology can not meet the needs of economic development. The combined challenges of poor resources, economical benefits and environmental pollution issues require further research to upgrade the separation efficiency economically. The methods of mineral processing should play a more important part in waste treatment such as wastewater treatment, the remediation of contaminated soil and the recycling of wastes. Biomineral technology will be utilised in the near future.
文摘Pyritic stromatolite, a rich pyrite ore, is scattered as reef masses in sedex deposits of the Proterozoic Yanshan rift trough. The pyritic stromatolite consists of a core and alternating concentric rims of light colloidal pyrite and dark organic materials. The concentric rims are cemented together by trichomes highly similar to the trichomic microorganisms inhabiting substantively around the black chimneys on the current sea beds while the core is composed chiefly of groups of thermophilous sulphur bacteria. Biomarkers for the molecules of pyritic stromatolite include pristane, phytane, regular isoprenoids paraffin, methyl-heptadecyl, and so on. This study reveals the existence of methane-yielding bacteria in the pyritic stromatolite and reflects the evolution of thermophilous thallophyta.
基金supported by the Natural Science Foundation of China (91858208, 41606086, 41606087)National Key Basic Research and Development Program of China 2017YFC0307704)the Marine Geological Survey Program of China Geological Survey (DD20190819).
文摘Research on the biomineralization in modern seafloor hydrothermal systems is conducive to unveiling the mysteries of the early Earth’s history, life evolution, subsurface biosphere and microbes in outer space. The hydrothermal biomineralization has become a focus of geo-biological research in the last decade, since the introduction of the microelectronic technology and molecular biology technology. Microorganisms play a critical role in the formations of oxide/hydroxides (e.g. Fe, Mn, S and Si oxide/hydroxides) and silicates on the seafloor hydrothermal systems globally. Furthermore, the biomineralization of modern chemolithoautotrophic microorganisms is regarded as a nexus between the geosphere and the biosphere, and as an essential complement of bioscience and geology. In this paper, we summarize the research progress of hydrothermal biomineralization, including the biogenic minerals, the microbial biodiversity, and also the interactions between minerals and microorganisms. In the foreseeable future, the research on hydrothermal biomineralization will inspire the development of geosciences and biosciences and thus enrich our knowledge of the Earth’s history, life evolution and even astrobiology.
文摘Human dental enamel forms over a period of 2 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin rnatrix in combination with a pro- grammable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that amelobtasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process ofamelogenesis.
基金The Joint Seismological Research Fund under contract NoA07113
文摘Large amounts of microfossil records discovered in the seafloor black smoker chimney are reported from the Okinawa Trough. They are well preserved and can be divided into four types of filamentous microfossils. It suggests that the fossils may be derived from sulfur or iron oxidation chemolithotrophic prokaryotes and fungi. Based on the comparison studies of the microbial mineralization processes, two steps of biomineralization were hypothesized: (1) biology controlled mineralization; and (2) biology induced mineralization. At the early stage of the mineralization, the biology controlling mineralization is dominating; at the later stage, the biology inducing mineralization is the main mechanism. The composition of the fluids and the species of the microbes will determine the types of the minerals formed.
基金Funded by the National Natural Science Foundation of China (No.30170270, 30200063)
文摘K16 and RGD-containing peptide was used to modify the surface of three-dimensional PLGA-(ASP-PEG) matrix, then the modified PLGA-(ASP-PEG) was incubated in modified simulated body fluid (SBF). The biomineralization of the modified PLGA- (ASP-PEG) was explored, and the peptide was synthesized with solid phase synthesis technology and linked cova-lently to PLGA-(ASP-PEG) through cross-linker (Sulfo-LC-SPDP), which was characterized with XPS. The modified PLGA-(ASP-PEG) (Experiment group, EG) and PLGA-(ASP-PEG) (Control group, CG) were all incubated into SBF for 10 d, and the growth of hydroxyapatite (HA) nanocrys-tals was confirmed with XRD, EDS and SEM. HPLC shows that peptide purity is 94.13%, while MS analysis shows that molecular value of peptide is 2741.26. Binding energy of the sulphur in EG was 164 eV is detected by XPS, and the ratio of carbon and sulphur is 99.746:0.1014. SEM analysis demonstrates the better growth of bonelike HA nanocrystals in EG than that in CG. The component of mineral in EG consisted mainly of hydroxyapatite containing low crystalline nanocrystals, and the Ca/P ratio is about 1.60, which is similar to that of natural bone, while the Ca/P ratio in CG is 1.52. PLGA-(ASP-PEG) modified with peptide provided enough functional groups for biomineralization, and possessed the bonelike structure.