期刊文献+
共找到1,063篇文章
< 1 2 54 >
每页显示 20 50 100
Porous structures of natural materials and bionic design 被引量:1
1
作者 张建忠 汪久根 马家驹 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第10期1095-1099,共5页
This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as th... This investigation and morphology analysis of porous structure of some kinds of natural materials such as chicken eggshell, partridge eggshell, pig bone, and seeds of mung bean, soja, ginkgo, lotus seed, as well as the epidermis of apples, with SEM (Scanning Electronic Microscope) showed that natural structures’ pores can be classified into uniform pores, gradient pores and multi pores from the viewpoint of the distribution variation of pore density, size and geometry. Furthermore, an optimal design of porous bearings was for the first time developed based on the gradient configuration of natural materials. The bionic design of porous structures is predicted to be widely developed and applied in the fields of materials and mechanical engineering in the future. 展开更多
关键词 多孔渗水结构 自然材料 仿生设计 密度分布 SEM
下载PDF
Structural Bionic Design of Machine Tool Structures 被引量:1
2
作者 ZHAO Ling WANG Ting +1 位作者 GUO Hong-liang LI Guo-meng 《Computer Aided Drafting,Design and Manufacturing》 2011年第2期45-50,共6页
A structural bionic design process is systematically presented for lightweight mechanical structures. By mimicking biological excellent structural principles, the stiffening ribs of a machining table and a moving colu... A structural bionic design process is systematically presented for lightweight mechanical structures. By mimicking biological excellent structural principles, the stiffening ribs of a machining table and a moving column were redesigned for better load-bearing efficiency. Finite element method(FEM) simulation and model experiments were carried out for performance verification, which showed the increase of structural static and dynamic performance. Structural bionic offers a new solution to change conventional structures for high specific stiffness. 展开更多
关键词 bionic lightweight design specific stiffness machine tool
下载PDF
Bionic Design and Experimental Validation of a Robotic Airship Inspired by the Physalia physalis
3
作者 Yueneng Yang Lili Chen +1 位作者 Zhiyang Liu Shifeng Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期740-753,共14页
The robotic airship is one of the most unique and promising green aircraft,however,as a“lighter-than-air aircraft”and“thermal aircraft”,its long-endurance flight has great difficulties in decreasing drag and contr... The robotic airship is one of the most unique and promising green aircraft,however,as a“lighter-than-air aircraft”and“thermal aircraft”,its long-endurance flight has great difficulties in decreasing drag and controlling buoyancy and pressure under thermal effects.In this work,we reported a robotic airship inspired by the Physalia physalis,imitating its morphology,physiological structure,and biological behaviors.The hull is designed by imitating the morphology of the Physalia physalis,and the gasbags including a helium balloon,two ballonets,and a thermoregulation gasbag are designed by imitating the physiological structure and biological behaviors of the pneumatophore,bladder,and gland of the Physalia physalis,respectively.Experimental results show that the bionic airship has an increase of about 40%in lift-to-drag and decreases the pressure in helium balloon by 47.5%under thermal effects,and has better aerodynamic performances and thermoregulation performances than conventional airships. 展开更多
关键词 Robotic airship bionic design Aerodynamic performances THERMOREGULATION Physalia physalis
原文传递
Bionic lightweight design of limb leg units for hydraulic quadruped robots by additive manufacturing and topology optimization
4
作者 Huaizhi Zong Junhui Zhang +6 位作者 Lei Jiang Kun Zhang Jun Shen Zhenyu Lu Ke Wang Yanli Wang Bing Xu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期1-13,共13页
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr... Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency. 展开更多
关键词 Additive manufacturing bionic lightweight design Limb leg unit Quadruped robot Trajectory tracking
下载PDF
Bionic design and performance test of maize grain cleaning screen through earthworm motion characteristics 被引量:3
5
作者 Lijun Wang Yongtao Yu +2 位作者 Shuai Zhang Xin Feng Lianglai Song 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第3期12-21,共10页
The maize mixture feeding with a large mass cannot be migrated backward rapidly along the planar reciprocating vibrating screen,and it is easy to accumulate in the front of the screen,which leads to the decrease of sc... The maize mixture feeding with a large mass cannot be migrated backward rapidly along the planar reciprocating vibrating screen,and it is easy to accumulate in the front of the screen,which leads to the decrease of screening efficiency.Based on the reverse engineering technology,using the wavy geometry formed during the earthworm(Pheretima guillelmi)moving as a bionic prototype,a bionic screen was designed to make the maize mixture migrate backward rapidly in the front of the screen.The contour curve of earthworm’s head in an axial contracted state was extracted and fitted to obtain its equation.Based on the difference of concave position of the lower surface’s wavy geometry during the earthworm moving,the motion of the bionic screen was divided into four postures,and the conversion between different postures of the bionic screen was realized by the cam drive mechanism.The kinematics simulation of the bionic screen was carried out through ADAMS,and the displacement and velocity of the bionic screen were analyzed.When the feeding mass of the maize mixture was set at 5 kg/s,6 kg/s and 7 kg/s,the test results showed that the time of the maize mixture migrated(TOMMM)in the front of the bionic screen was shortened by 0.18 s,0.71 s,and 1.36 s,respectively,compared with that of planar reciprocating vibrating screen.The total screening time(TST)of the bionic screen was shortened by 1.28 s,1.33 s,and 1.53 s,respectively.The ability of the maize mixture to be migrated backward was improved.This study can provide a reference for the innovative design of the cleaning screen. 展开更多
关键词 cleaning screen maize grain harvester material accumulation EARTHWORM bionic design motion characteristics
原文传递
Design of A Bionic Spudcan and Analysis of Penetration and Extraction Performances for Jack-up Platform 被引量:2
6
作者 GUO Sheng ZHUANG Hong +3 位作者 TANG Wen-xian WU Wen-le LIU Qin WANG Yue-yang 《China Ocean Engineering》 SCIE EI CSCD 2020年第1期80-88,共9页
The mechanisms of soil structure interaction have drawn much attention in the past years in the installation and operation of jack-up platform. A bionic spudcan produced by biomimetic of egg and snail shell is propose... The mechanisms of soil structure interaction have drawn much attention in the past years in the installation and operation of jack-up platform. A bionic spudcan produced by biomimetic of egg and snail shell is proposed, and the performance of the penetration and extraction are analyzed by numerical method. The geometric contour of egg and snail shell is measured, and its mathematical model is established respectively. According to the structure of existing spudcan of jack-up platform, three kinds of typical biomimetic spudcan are designed. Furthermore, numerical analysis models of biomimetic spudcan are established respectively to study the soil structure interaction mechanism in the process of penetration and extraction, and contrastive analysis of resistance characteristics are carried out. To conclude, the results show that the biomimetic spudcan facilitates the platform installation, and it is also beneficial to the improvement of the bearing capacity of spudcan. 展开更多
关键词 jack-up platform egg shell snail shell bionic design SPUDCAN soil structure interaction
下载PDF
Structural bionic design for high-speed machine tool working table based on distribution rules of leaf veins 被引量:6
7
作者 XING DengHai CHEN WuYi +1 位作者 ZHAO Ling MA JianFeng 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第8期2091-2098,共8页
High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes th... High-speed machine tool working table restrains the machining accuracy and machining efficiency,so lightweight design of the table is an important issue.In nature,leaf has developed a plate structure that maximizes the surface-to-volume ratio.It can be seen as a plate structure stiffened by veins.Compared with a high-speed machine tool working table,leaf veins play a role of supporting part which is similar to that of stiffening ribs,and they can provide some new design ideas for lightweight design of the table.In this paper,distribution rules of leaf veins were investigated,and a structural bionic design for the table was achieved based on regulation of leaf veins.First,statistical analysis on geometric structure of leaf veins was carried out,and four distribution rules were obtained.Then,relevant mechanical models were developed and analyzed in finite element software.Based on the results from mechanical analysis on those relevant models,the four distribution rules were translated into the design rules and a structural bionic design for the working table was achieved.Both simulation and experimental verifications were carried out,and results showed that the average displacement of the working table was reduced by about 33.9%. 展开更多
关键词 机床工作台 板状结构 仿生设计 分布规律 叶脉 有限元分析软件 基础 轻量化设计
原文传递
Design Principles of the Non-smooth Surface of Bionic Plow Moldboard 被引量:28
8
作者 Luquan Ren, Shiqiao Deng, Jingchun Wang, Zhiwu Han Key Laboratory of Terrain-Machine Bionics Engineering (Ministry of Education,China), Jilin University at Nanling Campus, Changchun 130022,P.R. China 《Journal of Bionic Engineering》 SCIE EI CSCD 2004年第1期9-19,共11页
The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow... The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed. 展开更多
关键词 bionicS plow moldboard non-smooth surface design principle
下载PDF
Lightweight Design and Verification of Gantry Machining Center Crossbeam Based on Structural Bionics 被引量:24
9
作者 Ling Zhao Jianfeng Ma +1 位作者 Wuyi Chen Hongliang Guo 《Journal of Bionic Engineering》 SCIE EI CSCD 2011年第2期201-206,共6页
The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the... The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption. 展开更多
关键词 lightweight design crossbeam structural bionics finite element method giant waterlily leaf
下载PDF
The Lightweight Design of Low RCS Pylon Based on Structural Bionics 被引量:10
10
作者 Hongjie Jiao,Yidu Zhang,Wuyi Chen Mechanical Engineering Design Centre,Beihang University,Beijing 100191,P.R.China 《Journal of Bionic Engineering》 SCIE EI CSCD 2010年第2期182-190,共9页
A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parame... A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly. 展开更多
关键词 lightweight design specific structure efficiency low RCS pylon bionic structure
下载PDF
Study of the Ballistic Impact Behavior of Protective Multi-Layer Composite Armor
11
作者 Dongsheng Jia Yingjie Xu +2 位作者 Liangdi Wang Jihong Zhu Weihong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期171-199,共29页
The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different ... The abalone shell,a composite material whose cross-section is composed of inorganic and organic layers,has high strength and toughness.Inspired by the abalone shell,several multi-layer composite plates with different layer sequences and thicknesses are studied as bullet-proof material in this paper.To investigate the ballistic performance of this multi-layer structure,the complete characterization model and related material parameters of large deformation,failure and fracture ofAl_(2)O_(3)ceramics andCarbon Fiber Reinforced Polymer(CFRP)are studied.Then,3D finite element models of the proposed composite plates with different layer sequences and thicknesses impacted by a 12.7 mm armor-piercing incendiary(API)are built using Abaqus to predict failure.The simulation results show that the CFRP/Al2O3 ceramic/Ultrahigh Molecular Weight Polyethylene(UHMWPE)/CFRP(1 mm/4 mm/4 mm/1 mm)composite is the optimized stack of layers.The simulation results under specified layer sequence and thickness have a reasonable correlation with the experimental results and reflect the failure and fracture of the multi-layer composite protective armor. 展开更多
关键词 Protective armor COMPOSITE bionic design structure design mechanical property
下载PDF
旋翼无人机仿生栖息机械臂设计
12
作者 刘九庆 刘凡 朱斌海 《森林工程》 北大核心 2024年第4期150-159,共10页
为满足旋翼无人机执行林区内定点监测、侦查等任务,通过对鸟类栖息过程研究及腿足仿生研究,设计一种仿生栖息机械臂。对整机进行模块化设计及运动学分析,腿部模块使用机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical ... 为满足旋翼无人机执行林区内定点监测、侦查等任务,通过对鸟类栖息过程研究及腿足仿生研究,设计一种仿生栖息机械臂。对整机进行模块化设计及运动学分析,腿部模块使用机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems,ADAMS)进行运动学轨迹仿真,爪部模块使用D-H(Denavit-Hartenberg)参数法取得趾尖运动学方程,通过MATLAB仿真得到爪部模块趾尖的工作空间点云分布。制作样机搭建试验系统,分别对趾部活动范围以及整机栖息能力进行试验验证。该设计结构简单,易操控,可完成试验室阶段的栖息行为。 展开更多
关键词 仿生设计 栖息机构 绳驱动 计算机仿真
下载PDF
刚性扑动仿生蝠鲼鱼的设计
13
作者 朱红萍 曾鑫 苏世杰 《机械制造》 2024年第1期55-61,74,共8页
蝠鲼鱼通过胸鳍摆动,在低速条件下具有良好的操纵性和稳定性。对蝠鲼鱼胸鳍刚性摆动时的水动力学性能进行仿真分析,得到蝠鲼鱼胸鳍刚性扑动最佳参数,同时得到最大推进因数。在此基础上,对刚性扑动仿生蝠鲼鱼的结构和控制系统进行设计,... 蝠鲼鱼通过胸鳍摆动,在低速条件下具有良好的操纵性和稳定性。对蝠鲼鱼胸鳍刚性摆动时的水动力学性能进行仿真分析,得到蝠鲼鱼胸鳍刚性扑动最佳参数,同时得到最大推进因数。在此基础上,对刚性扑动仿生蝠鲼鱼的结构和控制系统进行设计,并进行样机研制。通过仿真与样机试验对比,验证刚性扑动仿生蝠鲼鱼设计的合理性,运行效果良好。 展开更多
关键词 仿生 蝠鲼鱼 设计
下载PDF
向自然学习的设计创新方法研究——数字生物设计路径探索
14
作者 兰翠芹 贺爽 宋佳珈 《艺术设计研究》 北大核心 2024年第3期5-12,共8页
本研究以向自然学习的视角,受生物皮肤变色机制启发,尝试将其原理应用于新材料的设计和制造中,以此探索设计融合生物学知识的设计创新方法。通过实验研究,成功开发出一种能够模拟生物变色原理的新材料,这种材料具有独特的色彩变化能力,... 本研究以向自然学习的视角,受生物皮肤变色机制启发,尝试将其原理应用于新材料的设计和制造中,以此探索设计融合生物学知识的设计创新方法。通过实验研究,成功开发出一种能够模拟生物变色原理的新材料,这种材料具有独特的色彩变化能力,可以随着环境或刺激的变化而呈现出不同的颜色,能够模拟显示三维动态色彩。本研究的意义在于打破了传统色彩设计的局限,总结出数字生物设计的技术路径,为设计学交叉学科研究提供了新的创新方法。 展开更多
关键词 数字技术 色彩仿生 生物设计 色彩设计 新材料设计
下载PDF
可持续理念下藤编家具形态仿生设计研究
15
作者 许永生 何柳锦 支锦亦 《包装工程》 CAS 北大核心 2024年第4期336-344,共9页
目的为进一步提升产品的可持续性应用价值,提出了可持续理念下产品形态仿生设计路径,以藤家具为研究对象,探寻藤编家具的可持续设计创新。方法首先,采用文献研究与田野调查相结合的方法,梳理国内外藤编家具的设计研究现状,总结藤编家具... 目的为进一步提升产品的可持续性应用价值,提出了可持续理念下产品形态仿生设计路径,以藤家具为研究对象,探寻藤编家具的可持续设计创新。方法首先,采用文献研究与田野调查相结合的方法,梳理国内外藤编家具的设计研究现状,总结藤编家具行业的现存问题;其次,利用问卷调研法确定用户需求及仿生对象,借助AHP(层次分析法)决策分析原理选择最佳的仿生设计元素,并应用可持续设计策略对藤编家具进行设计创新;最后,采用LCA(生命周期评价)进行设计方案的可持续性评估,确定了综合水平高的方案。结论通过构建可持续理念下产品形态仿生设计路径,提出产品领域应用的可持续设计策略,并应用于藤编家具设计实践,结合用户调查和专家打分,从元素提取、方案设计和方案评估三个方面验证路径的可行性及有效性,为藤编家具的可持续创新提供新思路。 展开更多
关键词 家具设计 可持续设计 形态仿生 AHP层次分析法 藤编家具
下载PDF
基于反刍类动物臼齿仿生的平面磨具形貌结构设计与性能研究
16
作者 宋沛鸿 郭磊 +3 位作者 刘天罡 曹蕾蕾 陈瑱贤 张静 《表面技术》 EI CAS CSCD 北大核心 2024年第2期140-149,167,共11页
目的 提高平面研磨加工效率及加工质量。方法 提取了反刍类动物臼齿齿面形貌特征,设计了一种模块化分布式平面研磨工具,采用ABAQUS分析了无特征规则排布磨具与仿生特征排布磨具在研磨抛光过程中对工件压力分布均匀性的影响;采用Fluent... 目的 提高平面研磨加工效率及加工质量。方法 提取了反刍类动物臼齿齿面形貌特征,设计了一种模块化分布式平面研磨工具,采用ABAQUS分析了无特征规则排布磨具与仿生特征排布磨具在研磨抛光过程中对工件压力分布均匀性的影响;采用Fluent分析了仿生特征排布磨具形貌结构对磨削液流动性的影响;利用3D打印技术制备了仿生特征排布磨具与无特征规则排布磨具并进行了对比实验,通过响应面分析法讨论了转速、压力、表面结构特征等因素对磨具研磨性能的影响。结果 仿真结果表明,与无特征规则排布磨具相比,在4 N研磨压力下仿生特征排布磨具具有更优的工件表面应力分布均匀性;磨削液在磨具形貌特征间隙入口的流速为2.400 m/s时,与其他特征磨具相比,仿生特征模块化排布磨具的形貌特征间隙出口平均流速提升了29.45%。实验结果表明,与无特征规则排布磨具相比,在同等工艺下,使用仿生特征模块化排布磨具研磨的铝合金试件表面粗糙度由0.301μm降至0.188μm,下降了17.94%;当研磨压力为5 N时,材料去除速率由1.44μm/min提升至1.93μm/min,提升了34.47%。结论 平面磨具的形貌结构特征设计与排布对研磨过程中的工件接触压力分布、磨削液流动性具有重要影响。与无特征规则排布磨具相比,在相同工艺条件下臼齿仿生特征模块化排布磨具能够更有效地提升加工效率及加工质量。 展开更多
关键词 仿生设计 平面磨具 表面形貌结构 研磨加工性能 磨削液流动性 磨粒滞留
下载PDF
Elastic Buckling of Bionic Cylindrical Shells Based on Bamboo 被引量:22
17
作者 Jian-feng Ma Wu-yi Chen +1 位作者 Ling Zhao Da-hai Zhao 《Journal of Bionic Engineering》 SCIE EI CSCD 2008年第3期231-238,共8页
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnec... High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling. 展开更多
关键词 bionic design bamboo culm thin-walled cylindrical structure BUCKLING load-carrying efficiency
下载PDF
TOPOLOGY DESIGN OPTIMIZATION BASED ON BIOTIC BRANCH NET 被引量:1
18
作者 DingXiaohong LiGuojie YamazakiKoestu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期187-191,共5页
The biotic branch nets are extreme high-tech product. In order to achieve acertain functional objective, they can adjust their growth direction and growth velocity byaccording to the varying growth environment. An inn... The biotic branch nets are extreme high-tech product. In order to achieve acertain functional objective, they can adjust their growth direction and growth velocity byaccording to the varying growth environment. An innovative and effective methodology of topologydesign optimization based on the growth mechanism of biotic branch nets is suggested, and it isapplied to a layout design problem of a conductive cooling channel in a heat transfer system. Theeffectiveness of the method is validated by the FEM analysis. 展开更多
关键词 Topology design optimization bionic design Biotic branch net Heat transfersystem
下载PDF
采用仿海鸥翼型叶片提升轴流风机气动性能的研究
19
作者 李跃飞 姜怡欣 +3 位作者 吴立明 田晨晔 吴彦东 刘小民 《风机技术》 2024年第2期1-7,共7页
为提升轴流风机的气动性能,受到具有良好滑行飞行性能的海鸥翅膀独特的翼型结构的启发,本文研究通过提取海鸥翅膀特定截面位置处的翼型结构应用于轴流风机的叶片设计中,考察了叶片仿生设计对空调器用轴流风机气动性能的影响。首先采用... 为提升轴流风机的气动性能,受到具有良好滑行飞行性能的海鸥翅膀独特的翼型结构的启发,本文研究通过提取海鸥翅膀特定截面位置处的翼型结构应用于轴流风机的叶片设计中,考察了叶片仿生设计对空调器用轴流风机气动性能的影响。首先采用数值计算方法求解定常流动雷诺时均Navier-Stokes方程,对仿海鸥翼型叶片的轴流风机的气动性能及其内部流场进行分析,然后采用大涡模拟方法和FW-H声类比方法对轴流风机的气动噪声进行数值预测。结果表明:在相同的设计转速下,仿海鸥翼型叶片的轴流风机的气动效率提高了3.1%;在相同风量条件下,仿海鸥翼型叶片的轴流风机的噪声相比于原型风机降低了约1.0dB(A)。采用仿海鸥翼型叶片,风机叶片表面的静压分布均匀,叶片中段的压力脉动明显减少。同时,在风机进口轮毂处和叶顶区域,流动分离被抑制,叶片尾迹涡脱落引起的气流脉动和气流不均匀性相对减弱,这就有效提升了轴流风机的气动性能。 展开更多
关键词 轴流风机 海鸥翼型叶片 仿生设计 流动控制 气动性能 噪声
下载PDF
仿鸟类扑翼飞行器研究进展
20
作者 赵晓伟 曾东鸿 +1 位作者 占英 宝音贺西 《动力学与控制学报》 2024年第4期1-15,共15页
仿生扑翼飞行器有着优异的气动性能和灵活的飞行能力,在军民领域均有广泛的应用前景,学者们在原理样机研制、扑翼气动机理、驱动机构、飞行控制等多领域取得了一系列重要进展.本文从总体设计方法、驱动机构设计与优化、气动机理等方面... 仿生扑翼飞行器有着优异的气动性能和灵活的飞行能力,在军民领域均有广泛的应用前景,学者们在原理样机研制、扑翼气动机理、驱动机构、飞行控制等多领域取得了一系列重要进展.本文从总体设计方法、驱动机构设计与优化、气动机理等方面综述了仿鸟类扑翼飞行器技术的发展历程与研究进展.首先,从扑翼总体设计方法入手,总结了仿鸟类扑翼飞行器仿生构型,归纳了总体设计参数估算方法;其次,综述了多种构型曲柄连杆机构在扑翼驱动中的应用与优缺点;接着总结了扑翼气动机理研究的实验方法与数值计算方法,分析了不同扑翼气动算法针对不同应用场景在计算成本和准确度方面的优劣情况;最后,对仿鸟类扑翼飞行器系统设计研究现状进行总结,针对原理样机研制过程提出展望. 展开更多
关键词 扑翼飞行器 仿生构型 总体设计 驱动机构 气动机理
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部