Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generati...Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.展开更多
Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g....Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.展开更多
Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadr...Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.展开更多
Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir reco...Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir recovery factor.In recent years,hydraulic fracturing technology is widely applied for efficiently exploiting and developing low-permeability reservoirs using a low-viscosity fluid as a fracturing fluid.However,the transportation of the proppant is inefficient in the low-viscosity fluid,and the proppant has a low piling-up height in fracture channels.These key challenges restrict the fluid(natural gas or oil)flow in fracture channels and their functional flow areas,reducing the profits of hydrocarbon exploitation.This study aimed to explore and develop a novel dandelion-bionic proppant by modifying the surface of the proppant and the fiber.Its structure was similar to that of dandelion seeds,and it had high transport and stacking efficiency in low-viscosity liquids compared with the traditional proppant.Moreover,the transportation efficiency of this newly developed proppant was investigated experimentally using six different types of fracture models(tortuous fracture model,rough fracture model,narrow fracture model,complex fracture model,large-scale single fracture model,and small-scale single fracture model).Experimental results indicated that,compared with the traditional proppant,the transportation efficiency and the packing area of the dandelion-based bionic proppant significantly improved in tap water or low-viscosity fluid.Compared with the traditional proppant,the dandelionbased bionic proppant had 0.1-4 times longer transportation length,0.3-5 times higher piling-up height,and 2-10 times larger placement area.The newly developed proppant also had some other extraordinary features.The tortuosity of the fracture did not influence the transportation of the novel proppant.This proppant could easily enter the branch fracture and narrow fracture with a high packing area in rough surface fractures.Based on the aforementioned characteristics,this novel proppant technique could improve the proppant transportation efficiency in the low-viscosity fracturing fluid and increase the ability of the proppant to enter the secondary fracture.This study might provide a new solution for effectively exploiting low-permeability hydrocarbon reservoirs.展开更多
With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fi...With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails,the occurrence of complications delays patient recovery after surgical treatment.Design of a proximal femur bionic nail(PFBN)based on Zhang’s N triangle theory provides triangular supporting fixation,which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide.In this work,we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use.The results show that compared with proximal femoral nail antirotation(PFNA)and InterTan,PFBN can dramatically decrease the maximum strain in the proximal femur.Based on Frost’s mechanostat theory,the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN,which may render the proximal femur in a state of physiological overload,favoring post-operative recovery of intertrochanteric femur fracture in the elderly.This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.展开更多
The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new air...The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new airfoil is synthesized by the method of the mean camber line superposition thickness synthesis.The flow field characteristics of 4 synthetic airfoils were calculated by using the numerical simulation of CFD commercial software Fluent,and compared with 3 original airfoils,new airfoils of different shapes were obtained,and an incomplete synthetic parameterization method for airfoils optimization was proved,which has certain engineering practical value.展开更多
The four topics are described including the driving force and source of the scientific and technological creation, the definition and history of the bionics, the important significance of bionics in the development of...The four topics are described including the driving force and source of the scientific and technological creation, the definition and history of the bionics, the important significance of bionics in the development of the human beings, and the leading edge and progress of bionics. The appetency of human for the creation is the essential motivity of the innovation in science and technology. Nature and society are the objects for us to cognize and serve, meanwhile, the best teachers for us to learn from them. It is only 5 million years for human's development, but evolution of life has over 3.5 billion years history. Although, copying the creation from the human being is important, however, it has much more potential and opportunity in imitating the nature, and more possibility to promote the ability of original innovation. The significance and progress of bionics are summarized, in this paper, and the leading edges of bionics, in the near future, are forecasted.展开更多
The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid s...The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.展开更多
The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow...The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.展开更多
A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumpi...A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumping process. According to classic mechanics, the jumping process analysis was conducted to build the relationship of the locust jumping parameters. The take-offphase was divided into four stages in detail. Based on the biological observation and kinematics analysis, a mechanical model was proposed to simulate locust jumping. The forces of the flexible-rigid hopping mechanism at each stage were ana- lyzed. The kinematic analysis using pseudo-rigid-body model was described by D-H method. It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping. Moreover, the jumping angle which decides the jumping process was discussed, and its relation with other parameters was established. A calculation case analysis corroborated the method. The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance, which can provide a foundation for design and motion planning of the hopping robot.展开更多
Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stre...Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa. The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3μL water drop at room temperature. The measurement of the wetting property showed that the water contact angle of the unmodi- fied as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time. The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure. The structure is composed of the micro-scaled alumina columns and pores. The height of columns and the depth of pores depend on the ano- dizing time. The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT), showing a change in the wettability from hydrophobicity to su- per-hydrophobicity. This improvement in the wetting property chemical modification. is attributed to the decrease in the surface energy caused by the展开更多
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnec...High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.展开更多
The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the...The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.展开更多
Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodie...Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.展开更多
A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part sur...A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part surface and lateral to the legs which are different in size, arrangement and shape. These setae have different lengths and many thorns on the whole seta. The top ends of these setae stand up without furcations which direct uprightly towards the surface of the touched soil. By the method of removing these setae, getting the insect weight before and after digging into the dung we affirm farther that the setae on the beetle body surface form the anti-stick and non-adherent gentle interface. The soil machines and components made by imitating the gentle body surface of beetles have favorable non-adherent results.展开更多
The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the...The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals— with different contents of alloys of manganese, silicon, chromium, copper and rare earth— were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction. Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1 % up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.展开更多
The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is comp...The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.展开更多
A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parame...A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.展开更多
Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale...Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes are related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coenzymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.展开更多
To satisfy the requirements of real-time and high quality mosaics, a bionic compound eye visual system was designed by simulating the visual mechanism of a fly compound eye. Several CCD cameras were used in this syste...To satisfy the requirements of real-time and high quality mosaics, a bionic compound eye visual system was designed by simulating the visual mechanism of a fly compound eye. Several CCD cameras were used in this system to imitate the small eyes of a compound eye. Based on the optical analysis of this system, a direct panoramic image mosaic algorithm was proposed. Several sub-images were collected by the bionic compound eye visual system, and then the system obtained the overlapping proportions of these sub-images and cut the overlap sections of the neighboring images. Thus, a panoramic image with a large field of view was directly mosaicked, which expanded the field and guaranteed the high resolution. The experimental results show that the time consumed by the direct mosaic algorithm is only 2.2% of that by the traditional image mosaic algorithm while guaranteeing mosaic quality. Furthermore, the proposed method effectively solved the problem of misalignment of the mosaic image and eliminated mosaic cracks as a result of the illumination factor and other factors. This method has better real-time properties compared to other methods.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 52235006 and 52025053)the National Key Research and Development Program of China (No. 2022YFB4600500)
文摘Over millions of years of natural evolution,organisms have developed nearly perfect structures and functions.The self-fabrication of organisms serves as a valuable source of inspiration for designing the next-generation of structural materials,and is driving the future paradigm shift of modern materials science and engineering.However,the complex structures and multifunctional integrated optimization of organisms far exceed the capability of artificial design and fabrication technology,and new manufacturing methods are urgently needed to achieve efficient reproduction of biological functions.As one of the most valuable advanced manufacturing technologies of the 21st century,laser processing technology provides an efficient solution to the critical challenges of bionic manufacturing.This review outlines the processing principles,manufacturing strategies,potential applications,challenges,and future development outlook of laser processing in bionic manufacturing domains.Three primary manufacturing strategies for laser-based bionic manufacturing are elucidated:subtractive manufacturing,equivalent manufacturing,and additive manufacturing.The progress and trends in bionic subtractive manufacturing applied to micro/nano structural surfaces,bionic equivalent manufacturing for surface strengthening,and bionic additive manufacturing aiming to achieve bionic spatial structures,are reported.Finally,the key problems faced by laser-based bionic manufacturing,its limitations,and the development trends of its existing technologies are discussed.
基金supported by the National Natural Science Foundation of China(Grant No.52225503)National Key Research and Development Program of China(Grant No.2022YFB3805701)+1 种基金Development Program of Jiangsu Province(Grant Nos.BE2022069 and BE2022069-1)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX21-0207).
文摘Lightweight porous materials with high load-bearing,damage tolerance and energy absorption(EA)as well as intelligence of shape recovery after material deformation are beneficial and critical for many applications,e.g.aerospace,automobiles,electronics,etc.Cuttlebone produced in the cuttlefish has evolved vertical walls with the optimal corrugation gradient,enabling stress homogenization,significant load bearing,and damage tolerance to protect the organism from high external pressures in the deep sea.This work illustrated that the complex hybrid wave shape in cuttlebone walls,becoming more tortuous from bottom to top,creates a lightweight,load-bearing structure with progressive failure.By mimicking the cuttlebone,a novel bionic hybrid structure(BHS)was proposed,and as a comparison,a regular corrugated structure and a straight wall structure were designed.Three types of designed structures have been successfully manufactured by laser powder bed fusion(LPBF)with NiTi powder.The LPBF-processed BHS exhibited a total porosity of 0.042% and a good dimensional accuracy with a peak deviation of 17.4μm.Microstructural analysis indicated that the LPBF-processed BHS had a strong(001)crystallographic orientation and an average size of 9.85μm.Mechanical analysis revealed the LPBF-processed BHS could withstand over 25000 times its weight without significant deformation and had the highest specific EA value(5.32 J·g^(−1))due to the absence of stress concentration and progressive wall failure during compression.Cyclic compression testing showed that LPBF-processed BHS possessed superior viscoelastic and elasticity energy dissipation capacity.Importantly,the uniform reversible phase transition from martensite to austenite in the walls enables the structure to largely recover its pre-deformation shape when heated(over 99% recovery rate).These design strategies can serve as valuable references for the development of intelligent components that possess high mechanical efficiency and shape memory capabilities.
基金The work is supported by the National Natural Science Foundation of China(Nos.U21A20124 and 52205059)the Key Research and Development Program of Zhejiang Province(No.2022C01039)。
文摘Galloping cheetahs,climbing mountain goats,and load hauling horses all show desirable locomotion capability,which motivates the development of quadruped robots.Among various quadruped robots,hydraulically driven quadruped robots show great potential in unstructured environments due to their discrete landing positions and large payloads.As the most critical movement unit of a quadruped robot,the limb leg unit(LLU)directly affects movement speed and reliability,and requires a compact and lightweight design.Inspired by the dexterous skeleton–muscle systems of cheetahs and humans,this paper proposes a highly integrated bionic actuator system for a better dynamic performance of an LLU.We propose that a cylinder barrel with multiple element interfaces and internal smooth channels is realized using metal additive manufacturing,and hybrid lattice structures are introduced into the lightweight design of the piston rod.In addition,additive manufacturing and topology optimization are incorporated to reduce the redundant material of the structural parts of the LLU.The mechanical properties of the actuator system are verified by numerical simulation and experiments,and the power density of the actuators is far greater than that of cheetah muscle.The mass of the optimized LLU is reduced by 24.5%,and the optimized LLU shows better response time performance when given a step signal,and presents a good trajectory tracking ability with the increase in motion frequency.
基金supported by the Natural Science Foundation of Sichuan“Settlement and Transport Mechanism of Biomimetic Dandelion Proppant in Fracture” (No.23NSFSC5596)the China Postdoctoral Science Foundation (No.2023M742904)。
文摘Low-permeability reservoirs are generally characterized by low porosity and low permeability.Obtaining high production using the traditional method is technologically challenging because it yields a low reservoir recovery factor.In recent years,hydraulic fracturing technology is widely applied for efficiently exploiting and developing low-permeability reservoirs using a low-viscosity fluid as a fracturing fluid.However,the transportation of the proppant is inefficient in the low-viscosity fluid,and the proppant has a low piling-up height in fracture channels.These key challenges restrict the fluid(natural gas or oil)flow in fracture channels and their functional flow areas,reducing the profits of hydrocarbon exploitation.This study aimed to explore and develop a novel dandelion-bionic proppant by modifying the surface of the proppant and the fiber.Its structure was similar to that of dandelion seeds,and it had high transport and stacking efficiency in low-viscosity liquids compared with the traditional proppant.Moreover,the transportation efficiency of this newly developed proppant was investigated experimentally using six different types of fracture models(tortuous fracture model,rough fracture model,narrow fracture model,complex fracture model,large-scale single fracture model,and small-scale single fracture model).Experimental results indicated that,compared with the traditional proppant,the transportation efficiency and the packing area of the dandelion-based bionic proppant significantly improved in tap water or low-viscosity fluid.Compared with the traditional proppant,the dandelionbased bionic proppant had 0.1-4 times longer transportation length,0.3-5 times higher piling-up height,and 2-10 times larger placement area.The newly developed proppant also had some other extraordinary features.The tortuosity of the fracture did not influence the transportation of the novel proppant.This proppant could easily enter the branch fracture and narrow fracture with a high packing area in rough surface fractures.Based on the aforementioned characteristics,this novel proppant technique could improve the proppant transportation efficiency in the low-viscosity fracturing fluid and increase the ability of the proppant to enter the secondary fracture.This study might provide a new solution for effectively exploiting low-permeability hydrocarbon reservoirs.
基金supported by the National Natural Science Foundation of China(32130052,82072447,and 82272578)the Fundamental Research Funds for the Central Universities,Nankai University(730-C02922112 and 730-DK2300010314).
文摘With the aging population,intertrochanteric femur fracture in the elderly has become one of the most serious public health issues and a hot topic of research in trauma orthopedics.Due to the limitations of internal fixation techniques and the insufficient mechanical design of nails,the occurrence of complications delays patient recovery after surgical treatment.Design of a proximal femur bionic nail(PFBN)based on Zhang’s N triangle theory provides triangular supporting fixation,which dramatically decreases the occurrence of complications and has been widely used for clinical treatment of unstable intertrochanteric femur fracture worldwide.In this work,we developed an equivalent biomechanical model to analyze improvement in bone remodeling of unstable intertrochanteric femur fracture through PFBN use.The results show that compared with proximal femoral nail antirotation(PFNA)and InterTan,PFBN can dramatically decrease the maximum strain in the proximal femur.Based on Frost’s mechanostat theory,the local mechanical environment in the proximal femur can be regulated into the medium overload region by using a PFBN,which may render the proximal femur in a state of physiological overload,favoring post-operative recovery of intertrochanteric femur fracture in the elderly.This work shows that PFBN may constitute a panacea for unstable intertrochanteric femur fracture and provides insights into improving methods of internal fixation.
基金National Natural Science Foundation of China(Grant Nos.52376202)。
文摘The aerodynamic performance of wind turbine needs to be improved day by day.In this paper,the bionic airfoil of wind turbine and the traditional airfoil are combined to optimize the aerodynamic performance.The new airfoil is synthesized by the method of the mean camber line superposition thickness synthesis.The flow field characteristics of 4 synthetic airfoils were calculated by using the numerical simulation of CFD commercial software Fluent,and compared with 3 original airfoils,new airfoils of different shapes were obtained,and an incomplete synthetic parameterization method for airfoils optimization was proved,which has certain engineering practical value.
文摘The four topics are described including the driving force and source of the scientific and technological creation, the definition and history of the bionics, the important significance of bionics in the development of the human beings, and the leading edge and progress of bionics. The appetency of human for the creation is the essential motivity of the innovation in science and technology. Nature and society are the objects for us to cognize and serve, meanwhile, the best teachers for us to learn from them. It is only 5 million years for human's development, but evolution of life has over 3.5 billion years history. Although, copying the creation from the human being is important, however, it has much more potential and opportunity in imitating the nature, and more possibility to promote the ability of original innovation. The significance and progress of bionics are summarized, in this paper, and the leading edges of bionics, in the near future, are forecasted.
基金Supported by National Natural Science Foundation of China(Grant No.51375289)Shanghai Municipal Natural Science Foundation of China(Grant No.13ZR1415500)Innovation Fund of Shanghai Education Commission(Grant No.13YZ020)
文摘The body of quadruped robot is generally developed with the rigid structure. The mobility of quadruped robot depcnds on the mechanical properties of the body mechanism, It is difficult for quadruped robot with rigid structure to achieve better mobility walking or running in the unstructured environment. A kind of bionic flexible body mechanism for quadruped robot is proposed, which is composed of one bionic spine and four pneumatic artificial muscles(PAMs). This kind of body imitates the four-legged creatures' kinematical structure and physical properties, which has the characteristic of changeable stiff'hess, lightweight, flexible and better bionics. The kinematics of body bending is derived, and the coordinated movement between the flexible body and legs is analyzed. The relationship between the body bending angle and the PAM length is obtained. The dynamics of the body bending is derived by the floating coordinate method and Lagrangian method, and the driving tbrce of PAM is determined. The experiment of body bending is conductcd, and the dynamic bending characteristic of bionic flexible body is evaluated. Experimental results show that the bending angle of the bionic flexible body can reach 18. An innovation body mechanism for quadruped robot is proposed, which has the characteristic of flexibility and achieve bending by changing gas pressure of PAMs. The coordinated movement of the body and legs can achieve spinning gait in order to improve the mobility of quadruped robot.
文摘The diverse non-smooth body surfaces to reduce soil adhesion are the evolutional results for the soil animals to fit the adhesive and wet environment and can be used as a biological basis for the design of bionic plow moldboard. The model surfaces for bionic simulation should be taken from soil animal digging organs, on which the soil motion is similar to what is on the surface of moldboard. By analyzing the distribution of non-smooth units on the body surface of the ground beetle jaw and the soil moving stresses, the design principles of the bionic moldboard for the local and the whole moldboard were presented respectively. As well, the effect of soil moving speed on reducing adhesion, the dimensions relationship between soil particles and non-smooth convexes, the relationship between the enveloping surface of non-smooth convexes and the initial smooth surface of the plow body, and the convex types of the sphere coronal and the pangolin scales,etc.were discussed.
基金This work is financially supported by the National Natural Science Foundation of China (Grant No. 51075014).
文摘A flexible-rigid hopping mechanism which is inspired by the locust jumping was proposed, and its kinematic characteris- tics were analyzed. A series of experiments were conducted to observe locust morphology and jumping process. According to classic mechanics, the jumping process analysis was conducted to build the relationship of the locust jumping parameters. The take-offphase was divided into four stages in detail. Based on the biological observation and kinematics analysis, a mechanical model was proposed to simulate locust jumping. The forces of the flexible-rigid hopping mechanism at each stage were ana- lyzed. The kinematic analysis using pseudo-rigid-body model was described by D-H method. It is confirmed that the proposed bionic mechanism has the similar performance as the locust hind leg in hopping. Moreover, the jumping angle which decides the jumping process was discussed, and its relation with other parameters was established. A calculation case analysis corroborated the method. The results of this paper show that the proposed bionic mechanism which is inspired by the locust hind limb has an excellent kinematics performance, which can provide a foundation for design and motion planning of the hopping robot.
基金The authors are grateful to the National Nature Science Foundation of China (Grant No. 50635030) and the development project on industrialization of bionic non-adhesive cooker (Grant No. 2006D90304010) for the support of this work.
文摘Bionic alumina samples were fabricated on convex dome type aluminum alloy substrate using hard anodizing technique. The convex domes on the bionic sample were fabricated by compression molding under a compressive stress of 92.5 MPa. The water contact angles of the as-anodized bionic samples were measured using a contact angle meter (JC2000A) with the 3μL water drop at room temperature. The measurement of the wetting property showed that the water contact angle of the unmodi- fied as-anodized bionic alumina samples increases from 90° to 137° with the anodizing time. The increase in water contract angle with anodizing time arises from the gradual formation of hierarchical structure or composite structure. The structure is composed of the micro-scaled alumina columns and pores. The height of columns and the depth of pores depend on the ano- dizing time. The water contact angle increases significantly from 96° to 152° when the samples were modified with self-assembled monolayer of octadecanethiol (ODT), showing a change in the wettability from hydrophobicity to su- per-hydrophobicity. This improvement in the wetting property chemical modification. is attributed to the decrease in the surface energy caused by the
基金National Natural Science Foundation of China (Grant No. 50575008)the Aeronautical Science Foundation of China (Grant No. 05B01004)
文摘High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.
基金Acknowledgements The research was sponsored by the Natural Science Foundation of China (50975012), and the Scientific Research Foundation for the Outstanding Young Scientist of Shandong Province (2008BS05007).
文摘The lightweight and high efficiency of natural structures are the inexhaustible sources for engineering improvements. The goal of the study is to find innovative solutions for mechanical lightweight design through the application of structural bionic approaches. Giant waterlily leaf ribs and cactus stem are investigated for their optimal framework and superior performance. Their structural characteristics are extracted and used in the bio-inspired design of Lin MC6000 gantry machining center crossbeam. By mimicking analogous network structure, the bionic model is established, which has better load-carrying capacity than conventional distribution. Finite Element Method (FEM) is used for numerical simulation. Results show better specific stiffness of the bionic model, which is increased by 17.36%. Finally the scaled models are fabricated by precision casting for static and dynamic tests. The physical experiments are compared to numerical simulation. The results show that the maximum static deformation of the bionic model is reduced by about 16.22%, with 3.31% weight reduction. In addition, the first four natural frequencies are improved obviously. The structural bionic design is a valuable reference for updating conventional mechanical structures with better performance and less material consumption.
基金National Natural Science Foundation of China (Grant No.50635030) the International Cooperation key Project of Ministry of Science and Technology of China (Grant No. 2005DFA00850)+2 种基金 The key project about ministry of education of science and technology (Grant No. 105059) the international cooperative of Jilin Province (Grant No.20040703-1) Specialized Research fund for the Doctoral Program of higher Education (Grant No. 20050183064).
文摘Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.
文摘A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part surface and lateral to the legs which are different in size, arrangement and shape. These setae have different lengths and many thorns on the whole seta. The top ends of these setae stand up without furcations which direct uprightly towards the surface of the touched soil. By the method of removing these setae, getting the insect weight before and after digging into the dung we affirm farther that the setae on the beetle body surface form the anti-stick and non-adherent gentle interface. The soil machines and components made by imitating the gentle body surface of beetles have favorable non-adherent results.
文摘The non-smooth surface morphology of dung beetle, Copris ochus, was analyzed. The bulldozing plates with bionic geometric non-smooth or the chemical uneven surface were designed for the soil sliding test based on the simulation of the bumpy surface of the dung beetle. Special black metals— with different contents of alloys of manganese, silicon, chromium, copper and rare earth— were developed for making geometric non-smooth and chemical uneven surfaces by means of surface welding at the surfaces of a middle carbon steel plate. Four metals, with different surface properties including hardness and water contact angle were used to make the bulldozing plates for measuring the soil sliding resistance. Test results of soil sliding resistance indicate that all the geometric non-smooth plates and the chemical uneven plates reducing soil friction. Considering the materials and surface morphology, the bionic plate can reduce the soil sliding resistance from 18.1 % up to 42.2%, compared to the traditional smooth bulldozing plate made from middle carbon steel. The test results also show that the smaller the normal load, the greater effect on resistance reduction by the bionic non-smooth surface plates.
基金sup port provided by the Key Project of Ministry of Edu-cation of P.R.China(Grant No.02089)the National Key Grant Program of Basic Research De-velopment(Grant No.2002CCA01200).
文摘The tangent resistance on the interface of the soil-moldboard is an important component of the resistance to moving soil . We developed simplified mechanical models to analyze this resistance. We found that it is composed of two components, the frictional and adhesive resistances. These two components originate from the soil pore, which induced a capillary suction effect, and the soil-moldboard contact area produced tangent adhesive resistance. These two components varied differently with soil moisture. Thus we predicted that resistance reduction against soil exerted on the non-smooth bionic moldboard is mainly due to the elimination of capillary suction and the reduction of physical-chemical adsorption of soil.
基金support by National Natural Science Foundation of China(Grant No.50975012)
文摘A concept of Specific Structure Efficiency (SSE) was proposed that can be used in the lightweight effect evaluation ofstructures.The main procedures of bionic structure design were introduced systematically.The parameter relationship betweenhollow stem of plant and the minimum weight was deduced in detail.In order to improve SSE of pylons, the structural characteristicsof hollow stem were investigated and extracted.Bionic pylon was designed based on analogous biological structuralcharacteristics.Using finite element method based simulation, the displacements and stresses in the bionic pylon were comparedwith those of the conventional pylon.Results show that the SSE of bionic pylon is improved obviously.Static, dynamic andelectromagnetism tests were carried out on conventional and bionic pylons.The weight, stress, displacement and Radar CrossSection (RCS) of both pylons were measured.Experimental results illustrate that the SSE of bionic pylon is markedly improvedthat specific strength efficiency and specific stiffness efficiency of bionic pylon are increased by 52.9% and 43.6% respectively.The RCS of bionic pylon is reduced significantly.
文摘Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes are related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coenzymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.
文摘To satisfy the requirements of real-time and high quality mosaics, a bionic compound eye visual system was designed by simulating the visual mechanism of a fly compound eye. Several CCD cameras were used in this system to imitate the small eyes of a compound eye. Based on the optical analysis of this system, a direct panoramic image mosaic algorithm was proposed. Several sub-images were collected by the bionic compound eye visual system, and then the system obtained the overlapping proportions of these sub-images and cut the overlap sections of the neighboring images. Thus, a panoramic image with a large field of view was directly mosaicked, which expanded the field and guaranteed the high resolution. The experimental results show that the time consumed by the direct mosaic algorithm is only 2.2% of that by the traditional image mosaic algorithm while guaranteeing mosaic quality. Furthermore, the proposed method effectively solved the problem of misalignment of the mosaic image and eliminated mosaic cracks as a result of the illumination factor and other factors. This method has better real-time properties compared to other methods.