The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of ...The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of the four-bar link mechanism and the magneto-rheological (MR) damper are analyzed in detail. The fixed position of the MR damper is optimized and a virtual prototype of knee joint is given. In the end, the system model of kinematics, dynamics, and controller are given and a control experiment is performed. The control experiment indicates that the intelligent bionic leg with multi-axis knee is able to realize gait tracking of the amputee's healthy leg based on semi-active control of the MR damper.展开更多
Bionic robots are generally driven by motors.As robots driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility,more and more researchers have adopted PAMs to drive ...Bionic robots are generally driven by motors.As robots driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility,more and more researchers have adopted PAMs to drive bionic robots.A kind of bionic leg driven by PAMs for hopping is proposed in this work.A 3-DOF bionic leg driven by 4 PAMs is designed by analyzing the biological structure and movement principles of frog legs,and 3 kinds of leg configuration with different PAMs arrangement is proposed.One biarticular muscle is used to increase the joint rotating range.The bracket pulley and PAMs for driving joint can effectively increase its rotating range.The rotating range of hip and knee joint driven by a biarticular muscle is simulated.The simulation results show that the biarticular muscle can transfer the movement of the hip joint to the knee joint and increase the rotating range of the knee joint.The greater the contraction of PAM,the greater the rotating range of joint.The bionic leg can perform planned step distance and step height of hopping.展开更多
Leg amputations are common in accidents and diseases.The present active bionic legs use Electromyography(EMG)signals in lower limbs(just before the location of the amputation)to generate active control signals.The act...Leg amputations are common in accidents and diseases.The present active bionic legs use Electromyography(EMG)signals in lower limbs(just before the location of the amputation)to generate active control signals.The active control with EMGs greatly limits the potential of using these bionic legs because most accidents and diseases cause severe damages to tissues/muscles which originates EMG signals.As an alternative,the present research attempted to use an upper limb swing pattern to control an active bionic leg.A deep neural network(DNN)model is implemented to recognize the patterns in upper limb swing,and it is used to translate these signals into active control input of a bionic leg.The proposed approach can generate a full gait cycle within 1082 milliseconds,and it is comparable to the normal(a person without any disability)1070 milliseconds gait cycle.展开更多
The bionic legs are generally driven by motors which have the disadvantages of large size and heavy weight.In contrast,the bionic legs driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,go...The bionic legs are generally driven by motors which have the disadvantages of large size and heavy weight.In contrast,the bionic legs driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility.A kind of bionic leg driven by PAMs is designed.The proportional-integral-derivative(PID)algorithm and radial basis function neural network(RBFNN)algorithm are combined to design RBFNN-PID controller,and a low-pass filter is added to the control system,which can effectively improve the jitter phenomenon of the joint during the experiment.It is verified by simulation that the RBFNN-PID algorithm is better than traditional PID algorithm,the response time of joint is improved from 0.15 s to 0.07 s,and the precision of joint position control is improved from 0.75°to 0.001°.The experimental results show that the amplitude of the change in error is reduced from 0.5°to 0.2°.It is verified by jumping experiment that the mechanism can realize jumping action under control,and can achieve the horizontal displacement of 500 mm and the vertical displacement of 250 mm.展开更多
A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller...A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.展开更多
An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line p...An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.展开更多
Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by ...Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by PAMs.A 3-DOF musculoskeletal bionic leg mechanism is presented,which is driven by PAMs for quadruped robots.PAM is used to simulate the compliance of biological muscle.The kinematics of the leg swing is derived,and the foot desired trajectory is planned as the sinusoidal functions.The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion of joints.A proportional integral derivative(PID) algorithm is presented for controlling the flexion/extension of the joint.The trajectory tracking results of joints and the PAM gas pressure are obtained.Experimental results show that the developed leg mechanism exhibits good biological properties.展开更多
African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping desi...African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.展开更多
基金supported by China Postdoctoral Science Foundation(No. 20080441093)Key Laboratory Foundation of Liaoning Province(No. 2008S088)Postdoctoral Science Foundation of Northeastern University (No. 20080411)
文摘The above-knee intelligent bionic leg is very helpful to amputees in the area of rehabilitation medicine. This paper first introduces the functional demand of the above-knee prosthesis design. Then, the advantages of the four-bar link mechanism and the magneto-rheological (MR) damper are analyzed in detail. The fixed position of the MR damper is optimized and a virtual prototype of knee joint is given. In the end, the system model of kinematics, dynamics, and controller are given and a control experiment is performed. The control experiment indicates that the intelligent bionic leg with multi-axis knee is able to realize gait tracking of the amputee's healthy leg based on semi-active control of the MR damper.
基金Supported by the National Natural Science Foundation of China(No.51775323,51375289)
文摘Bionic robots are generally driven by motors.As robots driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility,more and more researchers have adopted PAMs to drive bionic robots.A kind of bionic leg driven by PAMs for hopping is proposed in this work.A 3-DOF bionic leg driven by 4 PAMs is designed by analyzing the biological structure and movement principles of frog legs,and 3 kinds of leg configuration with different PAMs arrangement is proposed.One biarticular muscle is used to increase the joint rotating range.The bracket pulley and PAMs for driving joint can effectively increase its rotating range.The rotating range of hip and knee joint driven by a biarticular muscle is simulated.The simulation results show that the biarticular muscle can transfer the movement of the hip joint to the knee joint and increase the rotating range of the knee joint.The greater the contraction of PAM,the greater the rotating range of joint.The bionic leg can perform planned step distance and step height of hopping.
文摘Leg amputations are common in accidents and diseases.The present active bionic legs use Electromyography(EMG)signals in lower limbs(just before the location of the amputation)to generate active control signals.The active control with EMGs greatly limits the potential of using these bionic legs because most accidents and diseases cause severe damages to tissues/muscles which originates EMG signals.As an alternative,the present research attempted to use an upper limb swing pattern to control an active bionic leg.A deep neural network(DNN)model is implemented to recognize the patterns in upper limb swing,and it is used to translate these signals into active control input of a bionic leg.The proposed approach can generate a full gait cycle within 1082 milliseconds,and it is comparable to the normal(a person without any disability)1070 milliseconds gait cycle.
基金Supported by the National Natural Science Foundation of China(No.51775323).
文摘The bionic legs are generally driven by motors which have the disadvantages of large size and heavy weight.In contrast,the bionic legs driven by pneumatic artificial muscles(PAMs)have the advantages of light weight,good bionics and flexibility.A kind of bionic leg driven by PAMs is designed.The proportional-integral-derivative(PID)algorithm and radial basis function neural network(RBFNN)algorithm are combined to design RBFNN-PID controller,and a low-pass filter is added to the control system,which can effectively improve the jitter phenomenon of the joint during the experiment.It is verified by simulation that the RBFNN-PID algorithm is better than traditional PID algorithm,the response time of joint is improved from 0.15 s to 0.07 s,and the precision of joint position control is improved from 0.75°to 0.001°.The experimental results show that the amplitude of the change in error is reduced from 0.5°to 0.2°.It is verified by jumping experiment that the mechanism can realize jumping action under control,and can achieve the horizontal displacement of 500 mm and the vertical displacement of 250 mm.
文摘A designing method of intelligent proportional-integral-derivative(PID) controllers was proposed based on the ant system algorithm and fuzzy inference. This kind of controller is called Fuzzy-ant system PID controller. It consists of an off-line part and an on-line part. In the off-line part, for a given control system with a PID controller,by taking the overshoot, setting time and steady-state error of the system unit step response as the performance indexes and by using the ant system algorithm, a group of optimal PID parameters K*p , Ti* and T*d can be obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-line part, based on Kp* , Ti*and Td* and according to the current system error e and its time derivative, a specific program is written, which is used to optimize and adjust the PID parameters on-line through a fuzzy inference mechanism to ensure that the system response has optimal transient and steady-state performance. This kind of intelligent PID controller can be used to control the motor of the intelligent bionic artificial leg designed by the authors. The result of computer simulation experiment shows that the controller has less overshoot and shorter setting time.
基金Project (50275150) supported by the National Natural Science Foundation of ChinaProject (RL200002) supported by the Foundation of the Robotics Laboratory, Chinese Academy of Sciences
文摘An optimal PID controller with incomplete derivation is proposed based on fuzzy inference and the geneticalgorithm, which is called the fuzzy-GA PID controller with incomplete derivation. It consists of the off-line part andthe on-line part. In the off-line part, by taking the overshoot, rise time, and settling time of system unit step re-sponse as the performance indexes and by using the genetic algorithm, a group of optimal PID parameters K*p , Ti* ,and Tj are obtained, which are used as the initial values for the on-line tuning of PID parameters. In the on-linepart, based on K; , Ti* , and T*d and according to the current system error e and its time derivative, a dedicatedprogram is written, which is used to optimize and adjust the PID parameters on line through a fuzzy inference mech-anism to ensure that the system response has optimal dynamic and steady-state performance. The controller has beenused to control the D. C. motor of the intelligent bionic artificial leg designed by the authors. The result of computersimulation shows that this kind of optimal PID controller has excellent control performance and robust performance.
基金Supported by the National Natural Science Foundation of China(No.51375289)Shanghai Municipal National Natural Science Foundation of China(No.13ZR1415500)Innovation Fund of Shanghai Education Commission(No.13YZ020)
文摘Pneumatic artificial muscles(PAMs) have properties similar to biological muscles,which are widely used in robotics as actuators.It is difficult to achieve high-precision position control for robotics system driven by PAMs.A 3-DOF musculoskeletal bionic leg mechanism is presented,which is driven by PAMs for quadruped robots.PAM is used to simulate the compliance of biological muscle.The kinematics of the leg swing is derived,and the foot desired trajectory is planned as the sinusoidal functions.The swing experiments of the musculoskeletal leg mechanism are conducted to analyse the extension and flexion of joints.A proportional integral derivative(PID) algorithm is presented for controlling the flexion/extension of the joint.The trajectory tracking results of joints and the PAM gas pressure are obtained.Experimental results show that the developed leg mechanism exhibits good biological properties.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51675221 and 91748211)the Science and Technology Development Planning Project of Jilin Province of China(Grant No.20180101077JC)the Science and Technology Research Project in the 13th Five⁃Year Period of Education Department of Jilin Province(Grant No.JJKH20190134KJ).
文摘African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.