In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time i...In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time integration.The developed 3D FEM soil model is a part of the coupled model PORO-WSSI 3D for 3D wave-seabed-marine structures interaction problem,and is validated by the analytical solution proposed by Wang(2000) for a laterally infinite seabed loaded by a uniform force.By adopting the developed 3D soil model,the consolidation of seabed under a caisson breakwater and hydrostatic pressure is investigated.The numerical results show that the caisson breakwater built on seabed has very significant effect on the stresses/displacements fields in the seabed foundation after the transient deformation and primary consolidation are completed.The parametric study indicates that the Young's modulus E of seabed is the most important parameter to affect the settlement of breakwater,and the displacement fields in seabed foundation.Taking the consolidation status as the initial condition,the interaction between ocean wave,caisson breakwater and seabed foundation is briefly investigated.The 3D ocean wave is determined by solving the Navier-Stokes equations with finite volume method(FVM).The numerical results indicate that there is intensive interaction between oceean wave, caisson breakwater and seabed foundation; and the breakwater indeed can effectively block the wave energy propagating to the coastline.展开更多
The dynamic response of a poroelastic stratum subjected to moving load is studied. The governing dynamic equations for poroelastic medium are solved by using Fourier transform. The general solutions for the stresses a...The dynamic response of a poroelastic stratum subjected to moving load is studied. The governing dynamic equations for poroelastic medium are solved by using Fourier transform. The general solutions for the stresses and displacements in the transformed domain are established. Based on the general solutions, with the consideration of boundary conditions, the final expressions of stresses and displacements in physical domain are put forward for the three-dimensional single-layer medium. Some numerical solutions for the stresses, displacements and pore fluid pressure are presented and reveal that the response of a poroelastic stratum varies obviously with the moving velocity.展开更多
Severe water waves can induce seabed liquefaction and do harm to marine structures. Dynamic response of seabed with definite thickness induced by cnoidal water waves is investigated numerically. Biot's consolidation ...Severe water waves can induce seabed liquefaction and do harm to marine structures. Dynamic response of seabed with definite thickness induced by cnoidal water waves is investigated numerically. Biot's consolidation equations are employed to model the seabed response. Parametric studies are carried out to examine the influence of the air content in the pore water and the soil hydraulic conductivity. It is been shown that the air content and soil hydraulic conductivity can significantly affect the pore pressure in seabed. An increase of air content and/or a decrease of soil hydraulic conductivity can change the pore pressure gradient sharply.展开更多
基金the financial support from EPSRC #EP/ G006482/1the funding support of Oversea Research Student Award from Scottish Government, UK
文摘In this study,based on the dynamic Biot's theory "u-p" approximation,a 3D finite element method(FEM) numerical soil model is developed,in which the Generalized Newmark-β method is adopted to determine the time integration.The developed 3D FEM soil model is a part of the coupled model PORO-WSSI 3D for 3D wave-seabed-marine structures interaction problem,and is validated by the analytical solution proposed by Wang(2000) for a laterally infinite seabed loaded by a uniform force.By adopting the developed 3D soil model,the consolidation of seabed under a caisson breakwater and hydrostatic pressure is investigated.The numerical results show that the caisson breakwater built on seabed has very significant effect on the stresses/displacements fields in the seabed foundation after the transient deformation and primary consolidation are completed.The parametric study indicates that the Young's modulus E of seabed is the most important parameter to affect the settlement of breakwater,and the displacement fields in seabed foundation.Taking the consolidation status as the initial condition,the interaction between ocean wave,caisson breakwater and seabed foundation is briefly investigated.The 3D ocean wave is determined by solving the Navier-Stokes equations with finite volume method(FVM).The numerical results indicate that there is intensive interaction between oceean wave, caisson breakwater and seabed foundation; and the breakwater indeed can effectively block the wave energy propagating to the coastline.
基金the National Natural Science Foundation of China (Grant No. 10372073)
文摘The dynamic response of a poroelastic stratum subjected to moving load is studied. The governing dynamic equations for poroelastic medium are solved by using Fourier transform. The general solutions for the stresses and displacements in the transformed domain are established. Based on the general solutions, with the consideration of boundary conditions, the final expressions of stresses and displacements in physical domain are put forward for the three-dimensional single-layer medium. Some numerical solutions for the stresses, displacements and pore fluid pressure are presented and reveal that the response of a poroelastic stratum varies obviously with the moving velocity.
基金the National Natural Science Foundation of China(No.41272317)
文摘Severe water waves can induce seabed liquefaction and do harm to marine structures. Dynamic response of seabed with definite thickness induced by cnoidal water waves is investigated numerically. Biot's consolidation equations are employed to model the seabed response. Parametric studies are carried out to examine the influence of the air content in the pore water and the soil hydraulic conductivity. It is been shown that the air content and soil hydraulic conductivity can significantly affect the pore pressure in seabed. An increase of air content and/or a decrease of soil hydraulic conductivity can change the pore pressure gradient sharply.