Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been d...Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been developed for the production of high-density tricyclic hydrocarbon biofuels from a monoterpenoid,1,8-cineole,using sulfuric acid(H2SO4)as the homogeneous catalyst.A^100%conversion of 1,8-cineole and a>40%carbon yield of cyclic dimers were achieved at 100℃within two hours.The mechanism for the acid-catalyzed conversion of 1,8-cineole to cyclic hydrocarbon dimers were explored.In particular,the formation of the diene intermediates and the following dimerization of dienes was essential to synthesize tricyclic terpene dimers.The biphasic catalytic process accelerated the deoxygenation rate and enabled the dimerization with the aid of organic solvent while controlling the reaction rates to avoid the formation of solid residues.Moreover,this process also facilitated the product separation by organic solvent extraction while enabling easy recycle of the homogenous catalysts.展开更多
The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved...The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved under relatively mild conditions.展开更多
文摘Terpenoids have drawn much attention to scientists in synthesizing high-performance bio-jet fuels due to their ring structures,which feature potential high densities.Here,a facile biphasic catalytic process has been developed for the production of high-density tricyclic hydrocarbon biofuels from a monoterpenoid,1,8-cineole,using sulfuric acid(H2SO4)as the homogeneous catalyst.A^100%conversion of 1,8-cineole and a>40%carbon yield of cyclic dimers were achieved at 100℃within two hours.The mechanism for the acid-catalyzed conversion of 1,8-cineole to cyclic hydrocarbon dimers were explored.In particular,the formation of the diene intermediates and the following dimerization of dienes was essential to synthesize tricyclic terpene dimers.The biphasic catalytic process accelerated the deoxygenation rate and enabled the dimerization with the aid of organic solvent while controlling the reaction rates to avoid the formation of solid residues.Moreover,this process also facilitated the product separation by organic solvent extraction while enabling easy recycle of the homogenous catalysts.
文摘The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved under relatively mild conditions.