This paper studies two-dimensional analysis of the surface state effect on current gain for a 4H-SiC bipolar junction transistor (BJT). Simulation results indicate the mechanism of current gain degradation, which is...This paper studies two-dimensional analysis of the surface state effect on current gain for a 4H-SiC bipolar junction transistor (BJT). Simulation results indicate the mechanism of current gain degradation, which is surface Fermi level pinning leading to a strong downward bending of the energy bands to form the channel of surface electron recombination current. The experimental results are well-matched with the simulation, which is modeled by exponential distributions of the interface state density replacing the single interface state trap. Furthermore, the simulation reveals that the oxide quality of the base emitter junction interface is very important for 4H-SiC BJT performance.展开更多
A unified model of low temperature current gain of polysilicon emitter bipolar transistors based on effective recombination method is presented, incorporating band-gap narrowing, carrier freezing-out, tunneling of hol...A unified model of low temperature current gain of polysilicon emitter bipolar transistors based on effective recombination method is presented, incorporating band-gap narrowing, carrier freezing-out, tunneling of holes through polysilicon/silicon interface oxide layer and reduced mobility mechanism in polysilicon. The modeling results based on this model are in good agreement with experimental data.展开更多
In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base tield plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the ...In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base tield plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm 3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 ~tm and base doping as high as 8 × 10^17 cm^-3 contribute to a maximum current gain of only 128.展开更多
This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best the...This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃.展开更多
In this paper, a new structure of a 4H-SiC bipolar junction transistor (BJT) with a buried layer (BL) in the base is presented. The current gain shows an approximately 100% increase compared with that of the conve...In this paper, a new structure of a 4H-SiC bipolar junction transistor (BJT) with a buried layer (BL) in the base is presented. The current gain shows an approximately 100% increase compared with that of the conventional structure. This is attributed to the creation of a built-in electric field for the minority carriers to transport in the base which is explained based on 2D device simulations. The optimized design of the buried layer region is also considered by numeric simulations.展开更多
In this paper we report on a novel structure of a 4H-SiC bipolar junction transistor with a double base epilayer that is continuously grown. The measured dc common-emitter current gain is 16.8 at Ic = 28.6 mA (Jc = 1...In this paper we report on a novel structure of a 4H-SiC bipolar junction transistor with a double base epilayer that is continuously grown. The measured dc common-emitter current gain is 16.8 at Ic = 28.6 mA (Jc = 183.4 A/cm2), and it increases with the collector current density increasing. The specific on-state resistance (Rsp-on) is 32.3 mΩ.cm2 and the open-base breakdown voltage reaches 410 V. The emitter N-type specific contact resistance and N+ emitter layer sheet resistance are 1.7× 10-3 Ω.cm2 and 150 Ω/□, respectively.展开更多
研究了一种双极性增益Boost变换器,它不仅具有传统Boost变换器的升压特性,而且具有双极性增益特性,即对于正、负输入电压,均能得到正极性的直流输出电压。因此,该双极性增益Boost变换器可直接用于功率因数校正变换器。本文分析了该双极...研究了一种双极性增益Boost变换器,它不仅具有传统Boost变换器的升压特性,而且具有双极性增益特性,即对于正、负输入电压,均能得到正极性的直流输出电压。因此,该双极性增益Boost变换器可直接用于功率因数校正变换器。本文分析了该双极性增益Boost变换器工作于电感电流连续模式(Continuous Current Mode,CCM)时的工作模态,分析了正、负输入电压情况下,该双极性增益Boost变换器的直流稳态特性,分析结果表明该双极性增益Boost变换器具有与传统Boost变换器相同的升压特性。最后,通过实验验证了理论分析的正确性。展开更多
文摘This paper studies two-dimensional analysis of the surface state effect on current gain for a 4H-SiC bipolar junction transistor (BJT). Simulation results indicate the mechanism of current gain degradation, which is surface Fermi level pinning leading to a strong downward bending of the energy bands to form the channel of surface electron recombination current. The experimental results are well-matched with the simulation, which is modeled by exponential distributions of the interface state density replacing the single interface state trap. Furthermore, the simulation reveals that the oxide quality of the base emitter junction interface is very important for 4H-SiC BJT performance.
基金Supported by National Natural Science Foundation of China
文摘A unified model of low temperature current gain of polysilicon emitter bipolar transistors based on effective recombination method is presented, incorporating band-gap narrowing, carrier freezing-out, tunneling of holes through polysilicon/silicon interface oxide layer and reduced mobility mechanism in polysilicon. The modeling results based on this model are in good agreement with experimental data.
基金supported by the Ministry of Education of China (Grant No. 20100101110056)the Natural Science Foundation for Distinguished Young Scholars of Zhejiang Province of China (Grant No. R1100468)
文摘In this paper, a novel structure of a 4H-SiC lateral bipolar junction transistor (LBJT) with a base tield plate and double RESURF in the drift region is presented. Collector-base junction depletion extension in the base region is restricted by the base field plate. Thin base as well as low base doping of the LBJT therefore can be achieved under the condition of avalanche breakdown. Simulation results show that thin base of 0.32 μm and base doping of 3 × 1017 cm 3 are obtained, and corresponding current gain is as high as 247 with avalanche breakdown voltage of 3309 V when the drift region length is 30 μm. Besides, an investigation of a 4H-SiC vertical BJT (VBJT) with comparable breakdown voltage (3357 V) shows that the minimum base width of 0.25 ~tm and base doping as high as 8 × 10^17 cm^-3 contribute to a maximum current gain of only 128.
文摘This paper proposes a thermal analytical model of current gain for bipolar junction transistor-bipolar static induction transistor (BJT-BSIT) compound device in the low current operation. It also proposes a best thermal compensating factor to the compound device that indicates the relationship between the thermal variation rate of current gain and device structure. This is important for the design of compound device to be optimized. Finally, the analytical model is found to be in good agreement with numerical simulation and experimental results. The test results demonstrate that thermal variation rate of current gain is below 10% in 25 ℃-85 ℃ and 20% in -55 ℃-25 ℃.
文摘In this paper, a new structure of a 4H-SiC bipolar junction transistor (BJT) with a buried layer (BL) in the base is presented. The current gain shows an approximately 100% increase compared with that of the conventional structure. This is attributed to the creation of a built-in electric field for the minority carriers to transport in the base which is explained based on 2D device simulations. The optimized design of the buried layer region is also considered by numeric simulations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60876061)the National Defense Key Laboratory Foundation from Nanjing National Defense Key Laboratory of Nanjing Electronic Devices Institute,China (GrantNo. 20090C1403)
文摘In this paper we report on a novel structure of a 4H-SiC bipolar junction transistor with a double base epilayer that is continuously grown. The measured dc common-emitter current gain is 16.8 at Ic = 28.6 mA (Jc = 183.4 A/cm2), and it increases with the collector current density increasing. The specific on-state resistance (Rsp-on) is 32.3 mΩ.cm2 and the open-base breakdown voltage reaches 410 V. The emitter N-type specific contact resistance and N+ emitter layer sheet resistance are 1.7× 10-3 Ω.cm2 and 150 Ω/□, respectively.
文摘研究了一种双极性增益Boost变换器,它不仅具有传统Boost变换器的升压特性,而且具有双极性增益特性,即对于正、负输入电压,均能得到正极性的直流输出电压。因此,该双极性增益Boost变换器可直接用于功率因数校正变换器。本文分析了该双极性增益Boost变换器工作于电感电流连续模式(Continuous Current Mode,CCM)时的工作模态,分析了正、负输入电压情况下,该双极性增益Boost变换器的直流稳态特性,分析结果表明该双极性增益Boost变换器具有与传统Boost变换器相同的升压特性。最后,通过实验验证了理论分析的正确性。