The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer ...The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage; while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ-Ⅴ in the two directions were com展开更多
Four bipolar triphenylamine(TPA) charge transport materials were constructed by introducing imidazole and trifluoroacetyl groups into the TPA units, and characterized by the nuclear magnetic resonance spectrum(NMR) an...Four bipolar triphenylamine(TPA) charge transport materials were constructed by introducing imidazole and trifluoroacetyl groups into the TPA units, and characterized by the nuclear magnetic resonance spectrum(NMR) and mass spectrometry(MS). Among them, 4-(2-(1,3-trifluoroacetyl)imidazole)-phenyl-4,4?-di(4-methoxyphenyl)amine(2 Me OTPA-IOS, 1) was determined by X-ray single-crystal diffraction. The compound crystallizes in monoclinic system, space group P21/c with a = 24.338(5), b = 9.565(2), c = 11.456(2) ?, β = 99.427(3)°, Mr = 565.47, V = 2631.0(8) ?3,Z = 4,Dc = 1.428 g/cm3, μ = 0.125 mm–1, F(000) = 1160, the final R = 0.0559 and wR = 0.1265 for 5150 observed reflections with I > 2σ(I). The optimized configurations of the target compounds were obtained by quantum chemical calculation, and the bipolarity of transportable holes and electrons was predicted by the frontier molecular orbital(HOMO and LUMO), which was further confirmed by the time of flight(TOF) method. In addition, the introduction of the terminal flexible chain enhances the solubility, thermal stability(DSC and TGA) and film-forming property of all compounds, and the frontier orbital energy of the solid film of the compounds was also tested(UV-vis and PYS). Thus, these compounds have the bipolarity of transportable holes and electrons and show good solubility and thermal stability.展开更多
By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs)...By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.展开更多
基金National Natural Science Foundation of China(29976040),Natural Science Foundation of AnhuiProvince(99045431),Foundation of Environments and Resources of USTC and Youth Foundation of USTC.
文摘The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage; while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ-Ⅴ in the two directions were com
基金This project was supported by the Scientific Research Development Program of Shandong Provincial High School(J18KA082)the Under-graduate Training Program for Innovation and Entrepreneurship of Shandong Provincial High School(201710446042,2018A043)the Experimental Technology Research Program of Qufu Normal University(SJ201709)
文摘Four bipolar triphenylamine(TPA) charge transport materials were constructed by introducing imidazole and trifluoroacetyl groups into the TPA units, and characterized by the nuclear magnetic resonance spectrum(NMR) and mass spectrometry(MS). Among them, 4-(2-(1,3-trifluoroacetyl)imidazole)-phenyl-4,4?-di(4-methoxyphenyl)amine(2 Me OTPA-IOS, 1) was determined by X-ray single-crystal diffraction. The compound crystallizes in monoclinic system, space group P21/c with a = 24.338(5), b = 9.565(2), c = 11.456(2) ?, β = 99.427(3)°, Mr = 565.47, V = 2631.0(8) ?3,Z = 4,Dc = 1.428 g/cm3, μ = 0.125 mm–1, F(000) = 1160, the final R = 0.0559 and wR = 0.1265 for 5150 observed reflections with I > 2σ(I). The optimized configurations of the target compounds were obtained by quantum chemical calculation, and the bipolarity of transportable holes and electrons was predicted by the frontier molecular orbital(HOMO and LUMO), which was further confirmed by the time of flight(TOF) method. In addition, the introduction of the terminal flexible chain enhances the solubility, thermal stability(DSC and TGA) and film-forming property of all compounds, and the frontier orbital energy of the solid film of the compounds was also tested(UV-vis and PYS). Thus, these compounds have the bipolarity of transportable holes and electrons and show good solubility and thermal stability.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21673296 and 11334014)the Science and Technology Plan of Hunan Province,China(Grant No.2015RS4002)the Postdoctoral Science Foundation of Central South University,China
文摘By employing non-equilibrium Green's function combined with the spin-polarized density-functional theory, we investigate the spin-dependent electronic transport properties of armchair arsenene nanoribbons(a As NRs). Our results show that the spin-metal and spin-semiconductor properties can be observed in a As NRs with different widths. We also find that there is nearly 100% bipolar spin-filtering behavior in the a As NR-based device with antiparallel spin configuration. Moreover, rectifying behavior and giant magnetoresistance are found in the device. The corresponding physical analyses have been given.