The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attr...The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.展开更多
Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure ...Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.展开更多
Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy patter...Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.展开更多
in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativ...in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.展开更多
With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent...With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time,since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly,this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough(q-ROPR)set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.展开更多
In this paper, by axiomatic way, a form of information entropy will be presented on crisp and fuzzy setting. Information entropy is the unavailability of information about a crisp or fuzzy event. It will use measure o...In this paper, by axiomatic way, a form of information entropy will be presented on crisp and fuzzy setting. Information entropy is the unavailability of information about a crisp or fuzzy event. It will use measure of information defined without any probability or fuzzy measure: for this reason it is called general information.展开更多
The objective of the research is to evaluate spatial groundwater quality based on improved fuzzy comprehensive assessment model with entropy weights(FCAEW)in geographical information system(GIS)environment.This paper ...The objective of the research is to evaluate spatial groundwater quality based on improved fuzzy comprehensive assessment model with entropy weights(FCAEW)in geographical information system(GIS)environment.This paper explores the method of comprehensive evaluation of groundwater and sets up an evaluation model applying GIS and FCAEW.Groundwater samples were collected and analyzed from 29 wells in Zhenping County,China.Six parameters were chosen including chloride,sulfate,total hardness,nitrate,fluoride and color.Better spatial interpolation methods for evaluated parameters are found out and selected according to the minimum cross-validation errors from the interpolation methods.FCAEW model was carried out with the help of GIS which makes the evaluating process simpler and easier and more automatically,effectively,efficiently and intelligently.The result embodies the feasibility and effectiveness of FCAEW in GIS when compared with other comprehensive evaluation methods.展开更多
In this paper, a new method for Principal Component Analysis in intuitionistic fuzzy situations has been proposed. This approach is based on cross entropy as an information index. This new method is a useful method fo...In this paper, a new method for Principal Component Analysis in intuitionistic fuzzy situations has been proposed. This approach is based on cross entropy as an information index. This new method is a useful method for data reduction for situations in which data are not exact. The inexactness in the situations assumed here is due to fuzziness and missing data information, so that we have two functions (membership and non-membership). Thus, method proposed here is suitable for Atanasov’s Intuitionistic Fuzzy Sets (A-IFSs) in which we have an uncertainty due to a mixture of fuzziness and missing data information. For the demonstration of the application of the method, we have used an example and have presented a conclusion.展开更多
This paper presents the formulation of the possibilistic Renyi entropy function from the Renyi entropy function using the framework of Hanman-Anirban entropy function. The new entropy function is used to derive the in...This paper presents the formulation of the possibilistic Renyi entropy function from the Renyi entropy function using the framework of Hanman-Anirban entropy function. The new entropy function is used to derive the information set features from keystroke dynamics for the authentication of users. A new composite fuzzy classifier is also proposed based on Mamta-Hanman entropy function and applied on the Information Set based features. A comparison of the results of the proposed approach with those of Support Vector Machine and Random Forest classifier shows that the new classifier outperforms the other two.展开更多
Based on the fuzzy characters of eco-environmental quality conception and classification standards, the incompatibility of evaluation indexes, the statistical fluctuation of index values, an information entropy fuzzy ...Based on the fuzzy characters of eco-environmental quality conception and classification standards, the incompatibility of evaluation indexes, the statistical fluctuation of index values, an information entropy fuzzy matter-element model for evaluating regional eco-environmental quality is proposed by way of comprehensively utilizing such theories as information theory, fuzzy sets and matter-element theory, etc. As a case, the model established here is used to evaluate the eco-environmental quality of Lake Chaohu basin. In the case, the eco-environmental quality standards and the evaluated schemes are indicated as matter-elements, together. Through constructing compound fuzzy matter-element, probability compound fuzzy matter-element and self-information compound fuzzy matter- element, the information entropy of each matter-element (including evaluated schemes and classification standards) is calculated in the end. According to these obtained information entropy values, the evaluated schemes can be not only arranged in quality state order but also classified by classification standards .Study result shows that information entropy fuzzy matter-element model is suitable for regional eco-environmental quality assessment.展开更多
针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了...针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。展开更多
基金Anhui Province Natural Science Research Project of Colleges and Universities(2023AH040321)Excellent Scientific Research and Innovation Team of Anhui Colleges(2022AH010098).
文摘The presence of numerous uncertainties in hybrid decision information systems(HDISs)renders attribute reduction a formidable task.Currently available attribute reduction algorithms,including those based on Pawlak attribute importance,Skowron discernibility matrix,and information entropy,struggle to effectively manages multiple uncertainties simultaneously in HDISs like the precise measurement of disparities between nominal attribute values,and attributes with fuzzy boundaries and abnormal values.In order to address the aforementioned issues,this paper delves into the study of attribute reduction withinHDISs.First of all,a novel metric based on the decision attribute is introduced to solve the problem of accurately measuring the differences between nominal attribute values.The newly introduced distance metric has been christened the supervised distance that can effectively quantify the differences between the nominal attribute values.Then,based on the newly developed metric,a novel fuzzy relationship is defined from the perspective of“feedback on parity of attribute values to attribute sets”.This new fuzzy relationship serves as a valuable tool in addressing the challenges posed by abnormal attribute values.Furthermore,leveraging the newly introduced fuzzy relationship,the fuzzy conditional information entropy is defined as a solution to the challenges posed by fuzzy attributes.It effectively quantifies the uncertainty associated with fuzzy attribute values,thereby providing a robust framework for handling fuzzy information in hybrid information systems.Finally,an algorithm for attribute reduction utilizing the fuzzy conditional information entropy is presented.The experimental results on 12 datasets show that the average reduction rate of our algorithm reaches 84.04%,and the classification accuracy is improved by 3.91%compared to the original dataset,and by an average of 11.25%compared to the other 9 state-of-the-art reduction algorithms.The comprehensive analysis of these research results clearly indicates that our algorithm is highly effective in managing the intricate uncertainties inherent in hybrid data.
基金Work supported by the Second Stage of Brain Korea 21 Projects Work(2010-0020163) supported by the Priority Research Centers Program through the National Research Foundation (NRF) funded by the Ministry of Education,Science and Technology of Korea
文摘Fuzzy entropy was designed for non convex fuzzy membership function using well known Hamming distance measure.The proposed fuzzy entropy had the same structure as that of convex fuzzy membership case.Design procedure of fuzzy entropy was proposed by considering fuzzy membership through distance measure,and the obtained results contained more flexibility than the general fuzzy membership function.Furthermore,characteristic analyses for non convex function were also illustrated.Analyses on the mutual information were carried out through the proposed fuzzy entropy and similarity measure,which was also dual structure of fuzzy entropy.By the illustrative example,mutual information was discussed.
文摘Selecting optimization ship form scheme is an important content in the process of concept design of ship. Multi-objective fuzzy decision-making model for ship form demonstration is set up according to the fuzzy pattern-recognition theory. Weight coefficients of each target of ship form scheme are determined by information entropy and individual subjective partiality. This model is used to select the optimal ship form scheme, the example shows that the model is exact and the resuh is credible. It can provide a reference for choosing the optimization scheme of ship form.
文摘in this paper, a new approach to relativistic information entropy is used to assess some relative uncertainties in structural reliability assessment. This approach is composed of the information theory and the relativistic theory, and can be used to measure the relativity of parameter uncertainty and system uncertainty in structural reliability theory based on the same generalized relativistic reference system. Therefore, the structural reliability assessment can be assessed reasonably by the approach.
基金This Project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under the Grant No.(G:578-135-1441)The authors,therefore,acknowledge with thanks DSR for technical and financial support.
文摘With the frequent occurrences of emergency events,emergency decision making(EDM)plays an increasingly significant role in coping with such situations and has become an important and challenging research area in recent times.It is essential for decision makers to make reliable and reasonable emergency decisions within a short span of time,since inappropriate decisions may result in enormous economic losses and social disorder.To handle emergency effectively and quickly,this paper proposes a new EDM method based on the novel concept of q-rung orthopair fuzzy rough(q-ROPR)set.A novel list of q-ROFR aggregation information,detailed description of the fundamental characteristics of the developed aggregation operators and the q-ROFR entropy measure that determine the unknown weight information of decision makers as well as the criteria weights are specified.Further an algorithm is given to tackle the uncertain scenario in emergency to give reliable and reasonable emergency decisions.By using proposed list of q-ROFR aggregation information all emergency alternatives are ranked to get the optimal one.Besides this,the q-ROFR entropy measure method is used to determine criteria and experts’weights objectively in the EDM process.Finally,through an illustrative example of COVID-19 analysis is compared with existing EDM methods.The results verify the effectiveness and practicability of the proposed methodology.
文摘In this paper, by axiomatic way, a form of information entropy will be presented on crisp and fuzzy setting. Information entropy is the unavailability of information about a crisp or fuzzy event. It will use measure of information defined without any probability or fuzzy measure: for this reason it is called general information.
基金supported by the National Natural Science Foundation of China(No.41161020)the Introduction of Talent Project of Ningxia University(No.BQD2012013)the Natural Science Foundation of Ningxia University(No.ZR1209)
文摘The objective of the research is to evaluate spatial groundwater quality based on improved fuzzy comprehensive assessment model with entropy weights(FCAEW)in geographical information system(GIS)environment.This paper explores the method of comprehensive evaluation of groundwater and sets up an evaluation model applying GIS and FCAEW.Groundwater samples were collected and analyzed from 29 wells in Zhenping County,China.Six parameters were chosen including chloride,sulfate,total hardness,nitrate,fluoride and color.Better spatial interpolation methods for evaluated parameters are found out and selected according to the minimum cross-validation errors from the interpolation methods.FCAEW model was carried out with the help of GIS which makes the evaluating process simpler and easier and more automatically,effectively,efficiently and intelligently.The result embodies the feasibility and effectiveness of FCAEW in GIS when compared with other comprehensive evaluation methods.
文摘In this paper, a new method for Principal Component Analysis in intuitionistic fuzzy situations has been proposed. This approach is based on cross entropy as an information index. This new method is a useful method for data reduction for situations in which data are not exact. The inexactness in the situations assumed here is due to fuzziness and missing data information, so that we have two functions (membership and non-membership). Thus, method proposed here is suitable for Atanasov’s Intuitionistic Fuzzy Sets (A-IFSs) in which we have an uncertainty due to a mixture of fuzziness and missing data information. For the demonstration of the application of the method, we have used an example and have presented a conclusion.
文摘This paper presents the formulation of the possibilistic Renyi entropy function from the Renyi entropy function using the framework of Hanman-Anirban entropy function. The new entropy function is used to derive the information set features from keystroke dynamics for the authentication of users. A new composite fuzzy classifier is also proposed based on Mamta-Hanman entropy function and applied on the Information Set based features. A comparison of the results of the proposed approach with those of Support Vector Machine and Random Forest classifier shows that the new classifier outperforms the other two.
文摘Based on the fuzzy characters of eco-environmental quality conception and classification standards, the incompatibility of evaluation indexes, the statistical fluctuation of index values, an information entropy fuzzy matter-element model for evaluating regional eco-environmental quality is proposed by way of comprehensively utilizing such theories as information theory, fuzzy sets and matter-element theory, etc. As a case, the model established here is used to evaluate the eco-environmental quality of Lake Chaohu basin. In the case, the eco-environmental quality standards and the evaluated schemes are indicated as matter-elements, together. Through constructing compound fuzzy matter-element, probability compound fuzzy matter-element and self-information compound fuzzy matter- element, the information entropy of each matter-element (including evaluated schemes and classification standards) is calculated in the end. According to these obtained information entropy values, the evaluated schemes can be not only arranged in quality state order but also classified by classification standards .Study result shows that information entropy fuzzy matter-element model is suitable for regional eco-environmental quality assessment.
文摘针对地质灾害易发性评价因子分级数不确定的问题,引入自适应膨胀因子模糊覆盖分级方法(fuzzy cover approach for clustering based on adaptive inflation factor,AIFFC)对易发性评价因子分级进行优化。以湖南省湘乡市为研究区,提取了坡度、坡向、高程、年平均降雨量、归一化植被指数、道路、断层、岩性和土地利用9类评价因子,运用AIFFC及自然断点法(natural breakpoint classification,NBC)对连续型因子进行分级,并分别代入加权信息量模型和随机森林模型,获取研究区易发性区划图。采用单因子分级结果精度、灾积比分析和易发性分区结果对AIFFC分级法的优越性进行检验,结果表明:各因子采用AIFFC算法分级的AUC值均高于自然断点法;基于AIFFC的随机森林模型及加权信息量模型的高易发区灾积比分别提升了56.3%、74.6%,低易发区灾积比分别降低了48%、58.1%,AUC值分别提升了7.6%、2.7%。采用AIFFC分级方法优化了地质灾害易发性评价因子分级,显著提高了地质灾害易发性评价的合理性。