The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flappi...The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness.展开更多
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis...This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.展开更多
A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produc...A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work.展开更多
Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant r...Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance.展开更多
This article studies the elastic properties of several biomimetic micro air vehicle(BMAV)wings that are based on a dragonfly wing.BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wi...This article studies the elastic properties of several biomimetic micro air vehicle(BMAV)wings that are based on a dragonfly wing.BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wing motion of flying biological organisms(e.g.,insects,birds,and bats).Three structurally identical wings were fabricated using different materials:acrylonitrile butadiene styrene(ABS),polylactic acid(PLA),and acrylic.Simplified wing frame structures were fabricated from these materials and then a nanocomposite film was adhered to them which mimics the membrane of an actual dragonfly.These wings were then attached to an electromagnetic actuator and passively flapped at frequencies of 10-250 Hz.A three-dimensional high frame rate imaging system was used to capture the flapping motions of these wings at a resolution of 320 pixels x 240 pixels and 35000 frames per second.The maximum bending angle,maximum wing tip deflection,maximum wing tip twist angle,and wing tip twist speed of each wing were measured and compared to each other and the actual dragonfly wing.The results show that the ABS wing has considerable flexibility in the chordwise direction,whereas the PLA and acrylic wings show better conformity to an actual dragonfly wing in the spanwise direction.Past studies have shown that the aerodynamic performance of a BMAV flapping wing is enhanced if its chordwise flexibility is increased and its spanwise flexibility is reduced.Therefore,the ABS wing(fabricated using a 3D printer) shows the most promising results for future applications.展开更多
Dragonflies have naturally high flying ability and flight maneuverability,making them more adaptable to harsh ecological environments.In this paper,a flapping wing bionic air vehicle with three-degrees-of-freedom is d...Dragonflies have naturally high flying ability and flight maneuverability,making them more adaptable to harsh ecological environments.In this paper,a flapping wing bionic air vehicle with three-degrees-of-freedom is designed and manufactured by simulating the flight mode of dragonfly.Firstly,the body structure of dragonfly was analyzed,and then the design scheme of flapping wing micro air vehicle was proposed based on the flight motion characteristics and musculoskeletal system of dragonfly.By optimizing the configuration and using Adams to do kinematic simulation,it is shown that the designed structure can make the wings move in an“8”shape trajectory,and the motion in three directions can maintain good consistency,with good dynamic performance.Based on CFD simulation method,we analyzed that the wing has the conditions to achieve flight with good aerodynamic performance at the incoming flow speed of 5 m s^(-1)and frequency of 4 Hz,and studied the effects of angle of attack and flutter frequency on the aerodynamic performance of the aircraft.Finally,the force measurement test of the aircraft prototype is carried out using a force balance and a small wind tunnel.The test results show that the prototype can provide the average lift of 3.62 N and the average thrust of 2.54 N,which are in good agreement with the simulation results.展开更多
We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments...We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments. The generator tilts the stroke plane of each wing independently to direct the resultant aerodynamic force in the desired direction to ultimately generate pitch and yaw moments. A roll moment is produced by an additional mechanism that shifts the trailing edge, which changes the wing rotation angles of the two flapping wings and produces an asymmetric thrust. Images of the flapping wings are captured with a high-speed camera and clearly show that the FW-MAV can independently change the stroke planes of its two wings. The measured force and moment data prove that the control moment generator produces reasonable pitch and yaw moments by tilting the stroke plane and realizes a roll moment by shifting the position of the trailing edge at the wing root.展开更多
The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micr...The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis.展开更多
The micro Flapping Rotary Wing (FRW) concept inspired by insects was proposed recently. Its aerodynamic performance is highly related to wing pitching and rotational motions. Therefore, the effect of wing pitching k...The micro Flapping Rotary Wing (FRW) concept inspired by insects was proposed recently. Its aerodynamic performance is highly related to wing pitching and rotational motions. Therefore, the effect of wing pitching kinematics and rotational speed on unsteady aerodynamic forces and power consumption of a FRW in hovering flight is further studied in this paper using computational fluid dy- namics method. Considering a fixed pitching amplitude (i.e., 80°), the vertical force of FRW increases with the downstroke angle of attack and is enhanced by high wing rotational speed. However, a high downstroke angle of attack is not beneficial for acquiring high rotational speed, in which peak vertical force at balance status (i.e., average rotational moment equals zero.) is only acquired at a comparatively small negative downstroke angle of attack. The releasing constraint of pitching amplitude, high rotational speed and enhanced balanced vertical force can be acquired by selecting small pitching amplitude despite high power consumption. To confirm which wing layout is more power efficient for a certain vertical force requirement, the power consumed by FRW is compared with the Rotary Wing (RW) and the Flapping Wing (FW) while considering two angle of attack strategies without the Reynolds number (Re) constraint. FRW and RW are the most power efficient layouts when the target vertical force is produced at an angle of attack that corresponds to the maximum vertical force coefficient and power efficiency, respectively. However, RW is the most power efficient layout overall despite its insufficient vertical force production capability under a certain Re.展开更多
A physical model for a micro air vehicle with Flapping Rotary Wings (FRW) is investigated by measuring the wing kine- matics in trim conditions and computing the corresponding aerodynamic force using computational f...A physical model for a micro air vehicle with Flapping Rotary Wings (FRW) is investigated by measuring the wing kine- matics in trim conditions and computing the corresponding aerodynamic force using computational fluid dynamics. In order to capture the motion image and reconstruct the positions and orientations of the wing, the photogrammetric method is adopted and a method for automated recognition of the marked points is developed. The characteristics of the realistic wing kinematics are presented. The results show that the non-dimensional rotating speed is a linear function of non-dimensional flapping frequency regardless of the initial angles of attack. Moreover, the effects of wing kinematics on aerodynamic force production and the underlying mechanism are analyzed. The results show that the wing passive pitching caused by elastic deformation can sig- nificantly enhance lift production. The Strouhal number of the FRW is much higher than that of general flapping wings, indi- cating the stronger unsteadiness of flows in FRW.展开更多
The Flapping Rotary Wing(FRW)is a micro air vehicle wing layout coupling flapping,pitching,and rotating motions.It can gain bencfits in high lift from a fast passive rotating motion,which is tightly related to the pas...The Flapping Rotary Wing(FRW)is a micro air vehicle wing layout coupling flapping,pitching,and rotating motions.It can gain bencfits in high lift from a fast passive rotating motion,which is tightly related to the passive pitching motion directly caused by wing flexible deformation.Therefore,flexible deformation is crucial for the wing kinematics and aerodynamic performance of an FRW.In this paper,we explored the effct of flexibility on wing kinematics and acrodynamics on the basis of a mechanical FRW model.A photogrammetric method was adopted to capture motion images according to which wing orientations and deformations were reconstructed.Corresponding acrodynamic force was computed using computational fluid dynamic method,and wing kinematics and deformations were used as simulation inputs.The experimental measurements presented the real orientation and deformation pattem of a real FRW.The wing passive deformation of a high-intensity FRW was found to be mainly caused by inertial force,and a linear positive spanwise twist was observed in the FRW.The effects of wing deformation on aerodynamic force production and the underlying mechanism were addressed.Results showed that lift augment,rotating moment enhancement,and power efficiency improvement can be achieved when a wing becomes flexible.Wing spanwise twist mainly accounts for these changes in aerodynamics,and increment in spanwise twist could further contributes to aerodynamic improvement.展开更多
文摘The problem of flapping motion control of Micro Air Vehicles (MAVs) with flapping wings was studied in this paper.Based upon the knowledge of skeletal and muscular components of hummingbird, a dynamic model for flapping wing wasdeveloped.A control scheme inspired by human memory and learning concept was constructed for wing motion control ofMAVs.The salient feature of the proposed control lies in its capabilities to improve the control performance by learning fromexperience and observation on its current and past behaviors, without the need for system dynamic information.Furthermore,the overall control scheme has a fairly simple structure and demands little online computations, making it attractive for real-timeimplementation on MAVs.Both theoretical analysis and computer simulation confirms its effectiveness.
文摘This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.
文摘A generic approach to model the kinematics and aerodynamics of flapping wing ornithopter has been followed, to model and analyze a flapping bi- and quad-wing ornithopter and to mimic flapping wing biosystems to produce lift and thrust for hovering and forward flight. Considerations are given to the motion of a rigid and thin bi-wing and quad-wing ornithopter in flapping and pitching motion with phase lag. Basic Unsteady Aerodynamic Approach incorporating salient features of viscous effect and leading-edge suction are utilized. Parametric study is carried out to reveal the aerodynamic characteristics of flapping bi- and quad-wing ornithopter flight characteristics and for comparative analysis with various selected simple models in the literature, in an effort to develop a flapping bi- and quad-wing ornithopter models. In spite of their simplicity, results obtained for both models are able to reveal the mechanism of lift and thrust, and compare well with other work.
基金supported by the National Natural Science Foundation of China(Nos.52175277,51905431).
文摘Flying insects are capable of flapping their wings to provide the required power and control forces for flight.A coordinated organizational system including muscles,wings,and control architecture plays a significant role,which provides the sources of inspiration for designing flapping-wing vehicles.In recent years,due to the development of micro-and meso-scale manufacturing technologies,advances in components technologies have directly led to a progress of smaller Flapping-Wing Nano Air Vehicles(FWNAVs)around gram and sub-gram scales,and these air vehicles have gradually acquired insect-like locomotive strategies and capabilities.This paper will present a selective review of components technologies for ultra-lightweight flapping-wing nano air vehicles under 3 g,which covers the novel propulsion methods such as artificial muscles,flight control mechanisms,and the design paradigms of the insect-inspired wings,with a special focus on the development of the driving technologies based on artificial muscles and the progress of the biomimetic wings.The challenges involved in constructing such small flapping-wing air vehicles and recommendations for several possible future directions in terms of component technology enhancements and overall vehicle performance are also discussed in this paper.This review will provide the essential guidelines and the insights for designing a flapping-wing nano air vehicle with higher performance.
基金primarily funded by the High Impact Research Grant from the Malaysian Ministry of Higher Education(UM.C/625/1/HIR/MOHE/ENG/12,H16001-D000012)a secondarily by a University of Malaya Research Grant(RG155-12AET)
文摘This article studies the elastic properties of several biomimetic micro air vehicle(BMAV)wings that are based on a dragonfly wing.BMAVs are a new class of unmanned micro-sized air vehicles that mimic the flapping wing motion of flying biological organisms(e.g.,insects,birds,and bats).Three structurally identical wings were fabricated using different materials:acrylonitrile butadiene styrene(ABS),polylactic acid(PLA),and acrylic.Simplified wing frame structures were fabricated from these materials and then a nanocomposite film was adhered to them which mimics the membrane of an actual dragonfly.These wings were then attached to an electromagnetic actuator and passively flapped at frequencies of 10-250 Hz.A three-dimensional high frame rate imaging system was used to capture the flapping motions of these wings at a resolution of 320 pixels x 240 pixels and 35000 frames per second.The maximum bending angle,maximum wing tip deflection,maximum wing tip twist angle,and wing tip twist speed of each wing were measured and compared to each other and the actual dragonfly wing.The results show that the ABS wing has considerable flexibility in the chordwise direction,whereas the PLA and acrylic wings show better conformity to an actual dragonfly wing in the spanwise direction.Past studies have shown that the aerodynamic performance of a BMAV flapping wing is enhanced if its chordwise flexibility is increased and its spanwise flexibility is reduced.Therefore,the ABS wing(fabricated using a 3D printer) shows the most promising results for future applications.
基金the financial support from the National Nature Science Foundation of China(NSFC)(U1601203,U19A20104)Jilin Province Science and Technology Development Program(20180101321JC,20190302099GX)+1 种基金Jilin Province Industrial Technology of Research and Development(2019C037-3)Science and Technology Project of Jilin Provincial Department of Education(JJKH20200955KJ).
文摘Dragonflies have naturally high flying ability and flight maneuverability,making them more adaptable to harsh ecological environments.In this paper,a flapping wing bionic air vehicle with three-degrees-of-freedom is designed and manufactured by simulating the flight mode of dragonfly.Firstly,the body structure of dragonfly was analyzed,and then the design scheme of flapping wing micro air vehicle was proposed based on the flight motion characteristics and musculoskeletal system of dragonfly.By optimizing the configuration and using Adams to do kinematic simulation,it is shown that the designed structure can make the wings move in an“8”shape trajectory,and the motion in three directions can maintain good consistency,with good dynamic performance.Based on CFD simulation method,we analyzed that the wing has the conditions to achieve flight with good aerodynamic performance at the incoming flow speed of 5 m s^(-1)and frequency of 4 Hz,and studied the effects of angle of attack and flutter frequency on the aerodynamic performance of the aircraft.Finally,the force measurement test of the aircraft prototype is carried out using a force balance and a small wind tunnel.The test results show that the prototype can provide the average lift of 3.62 N and the average thrust of 2.54 N,which are in good agreement with the simulation results.
文摘We propose a control moment generator to control the attitude of an insect-like tailless Flapping-wing Micro Air Vehicle (FW-MAV), where the flapping wings simultaneously produce the flight force and control moments. The generator tilts the stroke plane of each wing independently to direct the resultant aerodynamic force in the desired direction to ultimately generate pitch and yaw moments. A roll moment is produced by an additional mechanism that shifts the trailing edge, which changes the wing rotation angles of the two flapping wings and produces an asymmetric thrust. Images of the flapping wings are captured with a high-speed camera and clearly show that the FW-MAV can independently change the stroke planes of its two wings. The measured force and moment data prove that the control moment generator produces reasonable pitch and yaw moments by tilting the stroke plane and realizes a roll moment by shifting the position of the trailing edge at the wing root.
文摘The application of biomimetics in the development of unmanned-aerial-vehicles (UAV) has advanced to an exceptionally small scale of nano-aerial-vehicles (NAV), which has surpassed its immediate predecessor of micro-aerial-vehicles (MAV), leaving a vast range of development possi- bilities that MAVs have to offer. Because of the prompt advancement into the NAV research devel- opment, the true potential and challenges presented by MAV development were never solved, understood, and truly uncovered, especially under the influence of transition and low Reynolds number flow characteristics. This paper reviews a part of previous MAV research developments which are deemed important of notification; kinematics, membranes, and flapping mechanisms ranges from small birds to big insects, which resides within the transition and low Reynolds number regimes. This paper also reviews the possibility of applying a piezoelectric transmission used to pro- duce NAV flapping wing motion and mounted on a MAV, replacing the conventional motorized flapping wing transmission. Findings suggest that limited work has been done for MAVs matching these criteria. The preferred research approach has seen bias towards numerical analysis as compared to experimental analysis.
基金Acknowledgment This research was primarily supported by the Na- tional Natural Science Foundation of China (Grant number: 11672022).
文摘The micro Flapping Rotary Wing (FRW) concept inspired by insects was proposed recently. Its aerodynamic performance is highly related to wing pitching and rotational motions. Therefore, the effect of wing pitching kinematics and rotational speed on unsteady aerodynamic forces and power consumption of a FRW in hovering flight is further studied in this paper using computational fluid dy- namics method. Considering a fixed pitching amplitude (i.e., 80°), the vertical force of FRW increases with the downstroke angle of attack and is enhanced by high wing rotational speed. However, a high downstroke angle of attack is not beneficial for acquiring high rotational speed, in which peak vertical force at balance status (i.e., average rotational moment equals zero.) is only acquired at a comparatively small negative downstroke angle of attack. The releasing constraint of pitching amplitude, high rotational speed and enhanced balanced vertical force can be acquired by selecting small pitching amplitude despite high power consumption. To confirm which wing layout is more power efficient for a certain vertical force requirement, the power consumed by FRW is compared with the Rotary Wing (RW) and the Flapping Wing (FW) while considering two angle of attack strategies without the Reynolds number (Re) constraint. FRW and RW are the most power efficient layouts when the target vertical force is produced at an angle of attack that corresponds to the maximum vertical force coefficient and power efficiency, respectively. However, RW is the most power efficient layout overall despite its insufficient vertical force production capability under a certain Re.
基金This research was primarily supported by the National Natural Science Foundation of China (No. 11672022).
文摘A physical model for a micro air vehicle with Flapping Rotary Wings (FRW) is investigated by measuring the wing kine- matics in trim conditions and computing the corresponding aerodynamic force using computational fluid dynamics. In order to capture the motion image and reconstruct the positions and orientations of the wing, the photogrammetric method is adopted and a method for automated recognition of the marked points is developed. The characteristics of the realistic wing kinematics are presented. The results show that the non-dimensional rotating speed is a linear function of non-dimensional flapping frequency regardless of the initial angles of attack. Moreover, the effects of wing kinematics on aerodynamic force production and the underlying mechanism are analyzed. The results show that the wing passive pitching caused by elastic deformation can sig- nificantly enhance lift production. The Strouhal number of the FRW is much higher than that of general flapping wings, indi- cating the stronger unsteadiness of flows in FRW.
基金the National Natural Science Foundation of China(Nos.11902017 and 11672022).
文摘The Flapping Rotary Wing(FRW)is a micro air vehicle wing layout coupling flapping,pitching,and rotating motions.It can gain bencfits in high lift from a fast passive rotating motion,which is tightly related to the passive pitching motion directly caused by wing flexible deformation.Therefore,flexible deformation is crucial for the wing kinematics and aerodynamic performance of an FRW.In this paper,we explored the effct of flexibility on wing kinematics and acrodynamics on the basis of a mechanical FRW model.A photogrammetric method was adopted to capture motion images according to which wing orientations and deformations were reconstructed.Corresponding acrodynamic force was computed using computational fluid dynamic method,and wing kinematics and deformations were used as simulation inputs.The experimental measurements presented the real orientation and deformation pattem of a real FRW.The wing passive deformation of a high-intensity FRW was found to be mainly caused by inertial force,and a linear positive spanwise twist was observed in the FRW.The effects of wing deformation on aerodynamic force production and the underlying mechanism were addressed.Results showed that lift augment,rotating moment enhancement,and power efficiency improvement can be achieved when a wing becomes flexible.Wing spanwise twist mainly accounts for these changes in aerodynamics,and increment in spanwise twist could further contributes to aerodynamic improvement.