Soft arms have shown great application potential because of their flexibility and compliance in unstructured environments.However,soft arms made from soft materials exhibit limited cargo-loading capacity,which restric...Soft arms have shown great application potential because of their flexibility and compliance in unstructured environments.However,soft arms made from soft materials exhibit limited cargo-loading capacity,which restricts their ability to manipulate objects.In this research,a novel soft arm was developed by coupling a rigid origami exoskeleton with soft airbags.The joint module of the soft arm was composed of a deployable origami exoskeleton and three soft airbags.The motion and load performance of the soft arm of the eight-joint module was tested.The developed soft arm withstood at least 5 kg of load during extension,contraction,and bending motions;exhibited bistable characteristics in both fully contracted and fully extended states;and achieved a bending angle of more than 240°and a contraction ratio of more than 300%.In addition,the high extension,contraction,bending,and torsional stiffnesses of the soft arm were experimentally demonstrated.A kinematic-based trajectory planning of the soft arm was performed to evaluate its error in repetitive motion.This work will provide new design ideas and methods for flexible manipulation applications of soft arms.展开更多
基金the National Natural Science Foundation of China(Grant Nos.51975566,61821005,and U1908214)the Key Research Program of Frontier Sciences,CAS,China(Grant No.ZDBS-LY-JSC011).
文摘Soft arms have shown great application potential because of their flexibility and compliance in unstructured environments.However,soft arms made from soft materials exhibit limited cargo-loading capacity,which restricts their ability to manipulate objects.In this research,a novel soft arm was developed by coupling a rigid origami exoskeleton with soft airbags.The joint module of the soft arm was composed of a deployable origami exoskeleton and three soft airbags.The motion and load performance of the soft arm of the eight-joint module was tested.The developed soft arm withstood at least 5 kg of load during extension,contraction,and bending motions;exhibited bistable characteristics in both fully contracted and fully extended states;and achieved a bending angle of more than 240°and a contraction ratio of more than 300%.In addition,the high extension,contraction,bending,and torsional stiffnesses of the soft arm were experimentally demonstrated.A kinematic-based trajectory planning of the soft arm was performed to evaluate its error in repetitive motion.This work will provide new design ideas and methods for flexible manipulation applications of soft arms.