An asynchronous transmission scenario for non-orthogonal multiple access(NOMA)user signals with arbitrary phase offset is investigated in this paper.To improve the system performance in the user power-balanced conditi...An asynchronous transmission scenario for non-orthogonal multiple access(NOMA)user signals with arbitrary phase offset is investigated in this paper.To improve the system performance in the user power-balanced conditions,we adopt a synthetic detection method at the receiver,i.e.,the jointly optimal maximal likelihood detection aided triangular successive interference cancellation(JO ML-TSIC)method.Analytical bit error rate(BER)solutions are obtained for a two-user case with the optimal,intentional onehalf symbol period time delay implemented between the user signals.Furthermore,closed-form BER solutions for the case using the triangular successive interference cancellation(TSIC)detection method are also derived for comparisons.Numerical results show that the JO ML-TSIC receiver for the asynchronous system outperforms the TSIC receiver as well as the synchronous successive interference cancellation(SIC)receiver in all the conditions concerned.The results also show that the superiority of the JO ML-TSIC receiver is strengthened when the signals experience flat Rayleigh fading channels compared to the TSIC and the synchronous SIC receivers.展开更多
This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif...This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.展开更多
Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for ...Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.展开更多
timizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degrada- tions of BER at low an...timizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degrada- tions of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR展开更多
In this article, we consider the faster than Nyquist(FTN) technology in aspects of the application of the Viterbi algorithm(VA). Finite in time optimal FTN signals are used to provide a symbol rate higher than the &qu...In this article, we consider the faster than Nyquist(FTN) technology in aspects of the application of the Viterbi algorithm(VA). Finite in time optimal FTN signals are used to provide a symbol rate higher than the "Nyquist barrier" without any encoding. These signals are obtained as the solutions of the corresponding optimization problem. Optimal signals are characterized by intersymbol interference(ISI). This fact leads to significant bit error rate(BER) performance degradation for "classical" forms of signals. However, ISI can be controlled by the restriction of the optimization problem. So we can use optimal signals in conditions of increased duration and an increased symbol rate without significant energy losses. The additional symbol rate increase leads to the increase of the reception algorithm complexity. We consider the application of VA for optimal FTN signals reception. The application of VA for receiving optimal FTN signals with increased duration provides close to the potential performance of BER,while the symbol rate is twice above the Nyquist limit.展开更多
In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique....In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique. The performance of WCDMA system is deteriorated in presence of multipath fading environment. The paper presents space-time coded minimum mean square error (MMSE) Decision Feedback Equalizer (DFE) for wideband code division multiple access (WCDMA) in a frequency selective channel. The filter coefficients in MMSE DFE are optimized to suppress noise, intersymbol interference (ISI), and multiple access interference (MAI) with reasonable system complexity. For the above structure, we have presented the estimation of BER for a MMSE DFE using computer simulation experiments. The simulation includes the effects of additive white Gaussian noise, multipath fading and multiple access interference (MAI). Furthermore, the performance is compared with standard linear equalizer (LE) and RAKE receiver. Numerical and simulation results show that the MMSE DFE exhibits significant performance improvement over the standard linear equalizer (LE) and RAKE receiver.展开更多
A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels wit...A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
This letter presents the principles of Coded Orthogonal Frequency Division Multiplexing (COFDM) system and focuses on the effect of the Guard Interval (GI) on the systemperformance. The role of the GI parameter period...This letter presents the principles of Coded Orthogonal Frequency Division Multiplexing (COFDM) system and focuses on the effect of the Guard Interval (GI) on the systemperformance. The role of the GI parameter period to solve the problem of interferences that occur at the receiver is discussed. A new COFDM concept with a Variable GI (VGI) is proposed in order to improve the Bit Error Rate (BER) performance in the presence of multipaths with variable delays. A series of simulations have been carried out on the BER performance as a function of GI, maximum delay spread, and Signal-to-Noise Ratio (SNR), with QPSK as modulation scheme over multipath fading and Additive White Gaussian Noise (AWGN). The results show that the optimum values of the GI parameter approximately equal to the maximum delay spread, and the proposed system with VGI provides a better performance compared with the fixed length GI.展开更多
Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes tech...Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.展开更多
Currently puncturing is the predominant strategy to construct high code rate turbo codes. The puncturing period and puncturing patterns, which have important effect on the performance of punctured turbo codes (PTC), y...Currently puncturing is the predominant strategy to construct high code rate turbo codes. The puncturing period and puncturing patterns, which have important effect on the performance of punctured turbo codes (PTC), yet have not received complete investigations, are addressed in this paper. Proposes on selecting puncturing period and puncturing patterns are presented. Since puncturing will alter the distance spectrum of turbo codes, the performance of PTC needs further consideration. We derive an analytical upper bound for PTC, based on the assumption of uniform puncturing defined in this paper. Finally, we present some numeric results on the performance of PTC.展开更多
Free space optical communication (FSO) proves to be very effective and efficient technology for wireless communication. This work basically deals with the designing of FSO systems. Further, a comparative study has bee...Free space optical communication (FSO) proves to be very effective and efficient technology for wireless communication. This work basically deals with the designing of FSO systems. Further, a comparative study has been made to ascertain which modulation technique proves better for communication. This paper investigates the performance of ASK and PSK modulation based FSO system by varying different FSO parameters under several conditions including haze, rain, mist and fog. Finally, simulation results are analysed and discussed.展开更多
Multicarrier transmission systems like orthogonal frequency division multiplexing (OFDM) support high data rate and generally require no equalization at the receiver, making them simple and efficient. This paper stu...Multicarrier transmission systems like orthogonal frequency division multiplexing (OFDM) support high data rate and generally require no equalization at the receiver, making them simple and efficient. This paper studies the design and performance analysis of a hybrid modulation system derived from multifrequency and MQAM signals, employed in OFDM. This modulation scheme has better bit error rate (BER) performance and exhibits low PAPR. The proposed hybrid modulator reduces PAPR while keeping the OFDM transceiver design simple, as it does not require any side information or a little side information (only one bit) to be sent and is efficient for arbitrary number of subcarriers. The results of the implementations are compared with those of conventional OFDM system.展开更多
Triple-level cell(TLC)NAND flash is increasingly adopted to build solid-state drives(SSDs)for modern computer systems.While TLC NAND flash effectively improves storage density,it faces severe reliability issues;in par...Triple-level cell(TLC)NAND flash is increasingly adopted to build solid-state drives(SSDs)for modern computer systems.While TLC NAND flash effectively improves storage density,it faces severe reliability issues;in partic-ular,the pages exhibit different raw bit error rates(RBERs).Integrating strong low-density parity-check(LDPC)code helps to improve reliability but suffers from prolonged and proportional read latency due to multiple read retries for worse pages.The straightforward idea is that dispersing page-size data across several pages in different types can achieve a low-er average RBER and reduce the read latency.However,directly implementing this simple idea into flash translation lay-er(FTL)induces the read amplification issue as one logic page residing in more than one physical page brings several read operations.In this paper,we propose the Dynamic Request Interleaving(DIR)technology for improving the performance of TLC NAND flash-based SSDs,in particular,the aged ones with large RBERs.DIR exploits the observation that the la-tency of an I/O request is determined,without considering the queuing time,by the access of the slowest device page,i.e.,the page that has the highest RBER.By grouping consecutive logical pages that have high locality and interleaving their encoded data in different types of device pages that have different RBERs,DIR effectively reduces the number of read re-tries for LDPC with limited read amplification.To meet the requirement of allocating hybrid page types for interleaved data,we also design a page-interleaving friendly page allocation scheme,which splits all the planes into multi-plane re-gions for storing the interleaved data and single-plane regions for storing the normal data.The pages in the multi-plane re-gion can be read/written in parallel by the proposed multi-plane command and avoid the read amplification issue.Based on the DIR scheme and the proposed page allocation scheme,we build DIR-enable FTL,which integrates the proposed schemes into the FTL with some modifications.Our experimental results show that adopting DIR in aged SSDs exploits nearly 33%locality from I/O requests and,on average,reduces 43%read latency over conventional aged SSDs.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 62022019)
文摘An asynchronous transmission scenario for non-orthogonal multiple access(NOMA)user signals with arbitrary phase offset is investigated in this paper.To improve the system performance in the user power-balanced conditions,we adopt a synthetic detection method at the receiver,i.e.,the jointly optimal maximal likelihood detection aided triangular successive interference cancellation(JO ML-TSIC)method.Analytical bit error rate(BER)solutions are obtained for a two-user case with the optimal,intentional onehalf symbol period time delay implemented between the user signals.Furthermore,closed-form BER solutions for the case using the triangular successive interference cancellation(TSIC)detection method are also derived for comparisons.Numerical results show that the JO ML-TSIC receiver for the asynchronous system outperforms the TSIC receiver as well as the synchronous successive interference cancellation(SIC)receiver in all the conditions concerned.The results also show that the superiority of the JO ML-TSIC receiver is strengthened when the signals experience flat Rayleigh fading channels compared to the TSIC and the synchronous SIC receivers.
文摘This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance.
基金supported by Professional Development Research University Grant(UTM Vot No.06E59).
文摘Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.
基金Supported by the National High Technology Research and Development Programme of China(No.2014AA01A705)the National Natural Science Foundation of China(U1204607)
文摘timizing the formula, the energy for every bit of the codeword is optimized to achieve the minimum BER at high SNR region. At last, an adjustable parameter is employed to compensate the degrada- tions of BER at low and moderate SNR regions. Case studies indicate that the improvements of BER for turbo codes with short frame size are significant at a wide range of SNR
基金supported by the Grant of the President of the Russian Federation for state support of young Russian scientists(agreementМК-1571.2019.8 No.075-15-2019-1155)。
文摘In this article, we consider the faster than Nyquist(FTN) technology in aspects of the application of the Viterbi algorithm(VA). Finite in time optimal FTN signals are used to provide a symbol rate higher than the "Nyquist barrier" without any encoding. These signals are obtained as the solutions of the corresponding optimization problem. Optimal signals are characterized by intersymbol interference(ISI). This fact leads to significant bit error rate(BER) performance degradation for "classical" forms of signals. However, ISI can be controlled by the restriction of the optimization problem. So we can use optimal signals in conditions of increased duration and an increased symbol rate without significant energy losses. The additional symbol rate increase leads to the increase of the reception algorithm complexity. We consider the application of VA for optimal FTN signals reception. The application of VA for receiving optimal FTN signals with increased duration provides close to the potential performance of BER,while the symbol rate is twice above the Nyquist limit.
文摘In recent times, there has been growing interests in integration of voice, data and video traffic in wireless communication networks. With these growing interests, WCDMA has immerged as an attractive access technique. The performance of WCDMA system is deteriorated in presence of multipath fading environment. The paper presents space-time coded minimum mean square error (MMSE) Decision Feedback Equalizer (DFE) for wideband code division multiple access (WCDMA) in a frequency selective channel. The filter coefficients in MMSE DFE are optimized to suppress noise, intersymbol interference (ISI), and multiple access interference (MAI) with reasonable system complexity. For the above structure, we have presented the estimation of BER for a MMSE DFE using computer simulation experiments. The simulation includes the effects of additive white Gaussian noise, multipath fading and multiple access interference (MAI). Furthermore, the performance is compared with standard linear equalizer (LE) and RAKE receiver. Numerical and simulation results show that the MMSE DFE exhibits significant performance improvement over the standard linear equalizer (LE) and RAKE receiver.
基金Supported by the National Natural Science Foundation of China (No.60372107).
文摘A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
文摘This letter presents the principles of Coded Orthogonal Frequency Division Multiplexing (COFDM) system and focuses on the effect of the Guard Interval (GI) on the systemperformance. The role of the GI parameter period to solve the problem of interferences that occur at the receiver is discussed. A new COFDM concept with a Variable GI (VGI) is proposed in order to improve the Bit Error Rate (BER) performance in the presence of multipaths with variable delays. A series of simulations have been carried out on the BER performance as a function of GI, maximum delay spread, and Signal-to-Noise Ratio (SNR), with QPSK as modulation scheme over multipath fading and Additive White Gaussian Noise (AWGN). The results show that the optimum values of the GI parameter approximately equal to the maximum delay spread, and the proposed system with VGI provides a better performance compared with the fixed length GI.
文摘Terahertz(THz) communication is being considered as a potential solution to mitigate the demand for high bandwidth. The characteristic of THz band is relatively different from present wireless channel and imposes technical challenges in the design and development of communication systems. Due to the high path loss in THz band,wireless THz communication can be used for relatively short distances. Even,for a distance of few meters( > 5 m),the absorption coefficient is very high and hence the performance of the system is poor. The use of multiple antennas for wireless communication systems has gained overwhelming interest during the last two decades.Multiple Input Multiple Output( MIMO) Spatial diversity technique has been exploited in this paper to improve the performance in terahertz band. The results show that the Bit Error Rate( BER) is considerably improved for short distance( < 5 m) with MIMO. However,as the distance increases,the improvement in the error performance is not significant even with increase in the order of diversity. This is because,as distance increases,in some frequency bands the signal gets absorbed by water vapor and results in poor transmission. Adaptive modulation scheme is implemented to avoid these error prone frequencies. Adaptive modulation with receiver diversity is proposed in this work and has improved the BER performance of the channel for distance greater than 5 m.
基金This work is supported by National 863 Project of China (No. 2002 AA123046)
文摘Currently puncturing is the predominant strategy to construct high code rate turbo codes. The puncturing period and puncturing patterns, which have important effect on the performance of punctured turbo codes (PTC), yet have not received complete investigations, are addressed in this paper. Proposes on selecting puncturing period and puncturing patterns are presented. Since puncturing will alter the distance spectrum of turbo codes, the performance of PTC needs further consideration. We derive an analytical upper bound for PTC, based on the assumption of uniform puncturing defined in this paper. Finally, we present some numeric results on the performance of PTC.
文摘Free space optical communication (FSO) proves to be very effective and efficient technology for wireless communication. This work basically deals with the designing of FSO systems. Further, a comparative study has been made to ascertain which modulation technique proves better for communication. This paper investigates the performance of ASK and PSK modulation based FSO system by varying different FSO parameters under several conditions including haze, rain, mist and fog. Finally, simulation results are analysed and discussed.
基金Supported by the Higher Education Commission (HEC), Pakistan
文摘Multicarrier transmission systems like orthogonal frequency division multiplexing (OFDM) support high data rate and generally require no equalization at the receiver, making them simple and efficient. This paper studies the design and performance analysis of a hybrid modulation system derived from multifrequency and MQAM signals, employed in OFDM. This modulation scheme has better bit error rate (BER) performance and exhibits low PAPR. The proposed hybrid modulator reduces PAPR while keeping the OFDM transceiver design simple, as it does not require any side information or a little side information (only one bit) to be sent and is efficient for arbitrary number of subcarriers. The results of the implementations are compared with those of conventional OFDM system.
基金This work was supported by the National Key Research and Development Project of China under Grant No.2017YFB1001701the National Natural Science Foundation of China under Grant No.61972311in part by Shandong Provincial Natural Science Foundation of China under Grant No.ZR2019LZH007.
文摘Triple-level cell(TLC)NAND flash is increasingly adopted to build solid-state drives(SSDs)for modern computer systems.While TLC NAND flash effectively improves storage density,it faces severe reliability issues;in partic-ular,the pages exhibit different raw bit error rates(RBERs).Integrating strong low-density parity-check(LDPC)code helps to improve reliability but suffers from prolonged and proportional read latency due to multiple read retries for worse pages.The straightforward idea is that dispersing page-size data across several pages in different types can achieve a low-er average RBER and reduce the read latency.However,directly implementing this simple idea into flash translation lay-er(FTL)induces the read amplification issue as one logic page residing in more than one physical page brings several read operations.In this paper,we propose the Dynamic Request Interleaving(DIR)technology for improving the performance of TLC NAND flash-based SSDs,in particular,the aged ones with large RBERs.DIR exploits the observation that the la-tency of an I/O request is determined,without considering the queuing time,by the access of the slowest device page,i.e.,the page that has the highest RBER.By grouping consecutive logical pages that have high locality and interleaving their encoded data in different types of device pages that have different RBERs,DIR effectively reduces the number of read re-tries for LDPC with limited read amplification.To meet the requirement of allocating hybrid page types for interleaved data,we also design a page-interleaving friendly page allocation scheme,which splits all the planes into multi-plane re-gions for storing the interleaved data and single-plane regions for storing the normal data.The pages in the multi-plane re-gion can be read/written in parallel by the proposed multi-plane command and avoid the read amplification issue.Based on the DIR scheme and the proposed page allocation scheme,we build DIR-enable FTL,which integrates the proposed schemes into the FTL with some modifications.Our experimental results show that adopting DIR in aged SSDs exploits nearly 33%locality from I/O requests and,on average,reduces 43%read latency over conventional aged SSDs.