By increasing the daily needs of human energy, human manipulation of natural energy sources is expanded and encouraged the human society to developing science, knowledge and technology. Mechanical specific energy requ...By increasing the daily needs of human energy, human manipulation of natural energy sources is expanded and encouraged the human society to developing science, knowledge and technology. Mechanical specific energy required energy for drilling the unit of formation volume. This parameter can be used for functional analysis of drilling, drilling bit optimization and investigating of instability has been made during drilling operations. This parameter can be used for decreasing of drilling costs by increasing drilling speed, optimized the useful life of the drilling bit and determine the right time to replace the drilling bit, and in some cases reduced to a minimum amount. In South Pars field in Iran, many wells have been drilled;however detailed statistics processes hadn’t done for optimizing drilling parameters and their impact on mechanical specific energy. By results of these studies, we can analyze performance and drilling parameters such as weight on drilling bit, rotational speed, penetration rate, etc. In the most investigated cases, mechanical specific energy at the final period time of drilling on each wells has been increased gradually due to the speed movement reduction. Although by investigating middle formations in section of 12.25 inch, all existing wells on a platform in one of the phases of Iran’s South Pars field are being studied, which contains formations such as Hith, Surmeh, Neyriz, Dashtak and Kangan. Studies were done in two parts. In the first part, the range of optimized drilling parameters that is increasing drilling speed and reducing the required amount of energy for drilling formation. This process by investigating mechanical specific energy and its relationship with uniaxial compressive strength in five studied formation have been presented. In the second part, correlations to predict the mechanical specific energy in this area by statistical methods by SPSS software, presented and reviewed. Then, by the most appropriate relationship, the most influential drilling parameters on mechanical specific energy have been set. However, for drilling the next wells in this area drilling parameters with the most priority influences on mechanical specific energy, proposed in the optimum range, will be recommended.展开更多
In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in th...In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron.展开更多
A new universal equation using planet magnetic pole strength is presented and given reasoning for its assemblage. Coulomb’s Constant, normally used in calculating electrostatic force is utilized in a new magnetic dip...A new universal equation using planet magnetic pole strength is presented and given reasoning for its assemblage. Coulomb’s Constant, normally used in calculating electrostatic force is utilized in a new magnetic dipole equation for the first time, along with specific orbital energy. Results were generated for five planets that give insight into specific orbital energy as an energy constant for differing planets based on gravitational potential at the surface of a planet. Specific energy can be evaluated as both energy per unit volume (J/kg) and/or specific orbital energy (m2/s2). Due to a multitude of terms that lead to confusion it is recommended that the IEEE standards committee review specific orbital energy SI units for m2/s2. The magic number for cyclonic “lift off”, or anti-gravity, is calculated to be ∈ = 148 m2/s2 the value at which a classical law of magnetism appears as F = ke × H.展开更多
In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dim...In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.展开更多
文摘By increasing the daily needs of human energy, human manipulation of natural energy sources is expanded and encouraged the human society to developing science, knowledge and technology. Mechanical specific energy required energy for drilling the unit of formation volume. This parameter can be used for functional analysis of drilling, drilling bit optimization and investigating of instability has been made during drilling operations. This parameter can be used for decreasing of drilling costs by increasing drilling speed, optimized the useful life of the drilling bit and determine the right time to replace the drilling bit, and in some cases reduced to a minimum amount. In South Pars field in Iran, many wells have been drilled;however detailed statistics processes hadn’t done for optimizing drilling parameters and their impact on mechanical specific energy. By results of these studies, we can analyze performance and drilling parameters such as weight on drilling bit, rotational speed, penetration rate, etc. In the most investigated cases, mechanical specific energy at the final period time of drilling on each wells has been increased gradually due to the speed movement reduction. Although by investigating middle formations in section of 12.25 inch, all existing wells on a platform in one of the phases of Iran’s South Pars field are being studied, which contains formations such as Hith, Surmeh, Neyriz, Dashtak and Kangan. Studies were done in two parts. In the first part, the range of optimized drilling parameters that is increasing drilling speed and reducing the required amount of energy for drilling formation. This process by investigating mechanical specific energy and its relationship with uniaxial compressive strength in five studied formation have been presented. In the second part, correlations to predict the mechanical specific energy in this area by statistical methods by SPSS software, presented and reviewed. Then, by the most appropriate relationship, the most influential drilling parameters on mechanical specific energy have been set. However, for drilling the next wells in this area drilling parameters with the most priority influences on mechanical specific energy, proposed in the optimum range, will be recommended.
文摘In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron.
文摘A new universal equation using planet magnetic pole strength is presented and given reasoning for its assemblage. Coulomb’s Constant, normally used in calculating electrostatic force is utilized in a new magnetic dipole equation for the first time, along with specific orbital energy. Results were generated for five planets that give insight into specific orbital energy as an energy constant for differing planets based on gravitational potential at the surface of a planet. Specific energy can be evaluated as both energy per unit volume (J/kg) and/or specific orbital energy (m2/s2). Due to a multitude of terms that lead to confusion it is recommended that the IEEE standards committee review specific orbital energy SI units for m2/s2. The magic number for cyclonic “lift off”, or anti-gravity, is calculated to be ∈ = 148 m2/s2 the value at which a classical law of magnetism appears as F = ke × H.
文摘In the first step the extremal values of the vibrational specific heat and entropy represented by the Planck oscillators at the low temperatures could be calculated. The positions of the extrema are defined by the dimensionless ratios between the quanta of the vibrational energy and products of the actual temperature multiplied by the Boltzmann constant. It became evident that position of a local maximum obtained for the Planck’s average energy of a vibration mode and position of a local maximum of entropy are the same. In the next step the Haken’s time-dependent perturbation approach to the pair of quantum non-degenerate Schr<span style="white-space:nowrap;">?</span>dinger eigenstates of energy is re-examined. An averaging process done on the time variable leads to a very simple formula for the coefficients entering the perturbation terms.