With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for pac...With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.展开更多
大数据时代,Graph500是评测超级计算机处理数据密集型应用能力的重要工具,E级验证系统的图遍历处理能力主要受限于内存空间和访存带宽,尤其是内存空间利用率直接决定了图的测试规模和测试性能.针对天河E级验证系统小内存特征,提出了基...大数据时代,Graph500是评测超级计算机处理数据密集型应用能力的重要工具,E级验证系统的图遍历处理能力主要受限于内存空间和访存带宽,尤其是内存空间利用率直接决定了图的测试规模和测试性能.针对天河E级验证系统小内存特征,提出了基于双向位图的大规模图数据压缩存储方法(bidirectional-bitmap based CSR,Bi-CSR),Bi-CSR在CSR矩阵压缩的基础上引入行方向位图和列方向位图协同完成稀疏矩阵压缩存储,行方向位图主要负责行方向位图的压缩存储与索引,列方向位图除了进一步压缩图存储空间,还负责为顶点遍历向量并行优化提供加速空间.Bi-CSR大幅度减少了稀疏矩阵存储空间.面向天河E级验证系统,当图输入规模为237时,Graph500的图存储空间节约效率接近70%,全系统稳定测试性能为2.131E+12TEPS,性能最大加速比超过100倍.展开更多
基金supported by the National Key Basic Research and Development (973) Program of China (Nos. 2012CB315801 and 2013CB228206)the National Natural Science Foundation of China A3 Program (No. 61140320)+2 种基金the National Natural Science Foundation of China (Nos. 61233016 and 61472200)supported by the National Training Program of Innovation and Entrepreneurship for Undergraduates (Nos. 201410003033 and 201410003031)Hitachi (China) Research and Development Corporation
文摘With the growing popularity of Internet applications and the widespread use of mobile Internet, Internet traffic has maintained rapid growth over the past two decades. Internet Traffic Archival Systems(ITAS) for packets or flow records have become more and more widely used in network monitoring, network troubleshooting, and user behavior and experience analysis. Among the three key technologies in ITAS, we focus on bitmap index compression algorithm and give a detailed survey in this paper. The current state-of-the-art bitmap index encoding schemes include: BBC, WAH, PLWAH, EWAH, PWAH, CONCISE, COMPAX, VLC, DF-WAH, and VAL-WAH. Based on differences in segmentation, chunking, merge compress, and Near Identical(NI) features, we provide a thorough categorization of the state-of-the-art bitmap index compression algorithms. We also propose some new bitmap index encoding algorithms, such as SECOMPAX, ICX, MASC, and PLWAH+, and present the state diagrams for their encoding algorithms. We then evaluate their CPU and GPU implementations with a real Internet trace from CAIDA. Finally, we summarize and discuss the future direction of bitmap index compression algorithms. Beyond the application in network security and network forensic, bitmap index compression with faster bitwise-logical operations and reduced search space is widely used in analysis in genome data, geographical information system, graph databases, image retrieval, Internet of things, etc. It is expected that bitmap index compression will thrive and be prosperous again in Big Data era since 1980s.
文摘大数据时代,Graph500是评测超级计算机处理数据密集型应用能力的重要工具,E级验证系统的图遍历处理能力主要受限于内存空间和访存带宽,尤其是内存空间利用率直接决定了图的测试规模和测试性能.针对天河E级验证系统小内存特征,提出了基于双向位图的大规模图数据压缩存储方法(bidirectional-bitmap based CSR,Bi-CSR),Bi-CSR在CSR矩阵压缩的基础上引入行方向位图和列方向位图协同完成稀疏矩阵压缩存储,行方向位图主要负责行方向位图的压缩存储与索引,列方向位图除了进一步压缩图存储空间,还负责为顶点遍历向量并行优化提供加速空间.Bi-CSR大幅度减少了稀疏矩阵存储空间.面向天河E级验证系统,当图输入规模为237时,Graph500的图存储空间节约效率接近70%,全系统稳定测试性能为2.131E+12TEPS,性能最大加速比超过100倍.