Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can b...Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can be problematic at low SNRs and in high interference situations, as detecting and decoding techniques may not perform correctly in such circumstances. In addition, conventional error correction algorithms have limitations in their ability to correct errors in ADS-B messages, as the bit and confidence values may be declared inaccurately in the event of low SNRs and high interference. The principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) recurrent neural network model for error correction in conjunction with a conventional algorithm. The data of various flights are collected and cleaned in an initial stage. The clean data is divided randomly into training and test sets. Next, the LSTM model is trained based on the training dataset, and then the model is evaluated based on the test dataset. The proposed model not only improves the ADS-B In packet error correction rate (PECR), but it also enhances the ADS-B In terms of sensitivity. The performance evaluation results reveal that the proposed scheme is achievable and efficient for the avionics industry. It is worth noting that the proposed algorithm is not dependent on conventional algorithms’ prerequisites.展开更多
The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower b...The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.展开更多
Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-sc...Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.展开更多
Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. ...With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.展开更多
Concerning inter4v mode employed widely in MPEG-4 video, a new temporal error concealment scheme for MPEG-4 video sequences is proposed, which can selectively interpolate one or four motion vectors (MVs) for the mis...Concerning inter4v mode employed widely in MPEG-4 video, a new temporal error concealment scheme for MPEG-4 video sequences is proposed, which can selectively interpolate one or four motion vectors (MVs) for the missing macroblock ( MB ) according to the estimated MB coding mode. Performance of the proposed scheme is compared with the existing schemes with multiple testing sequences at different bit error rates. Experimental results show that the proposed algorithm can mask the impairments caused by transmission errors more efficiently than 0 MV and average MV methods by consuming more time for different bit error rates. It has an acceptable image quality close to that obtained by the selective motion vector matching ( SMVM ) algorithm, while taking less than half of cycles of operations. The proposed concealment scheme is suitable for low complexity video real-time implementations.展开更多
Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is o...Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.展开更多
In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical...In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing.展开更多
This paper proposes a high-throughput short reference differential chaos shift keying cooperative communication system with the aid of code index modulation,referred to as CIM-SR-DCSK-CC system.In the proposed CIM-SR-...This paper proposes a high-throughput short reference differential chaos shift keying cooperative communication system with the aid of code index modulation,referred to as CIM-SR-DCSK-CC system.In the proposed CIM-SR-DCSK-CC system,the source transmits information bits to both the relay and destination in the first time slot,while the relay not only forwards the source information bits but also sends new information bits to the destination in the second time slot.To be specific,the relay employs an N-order Walsh code to carry additional log_(2)N information bits,which are superimposed onto the SRDCSK signal carrying the decoded source information bits.Subsequently,the superimposed signal carrying both the source and relay information bits is transmitted to the destination.Moreover,the theoretical bit error rate(BER)expressions of the proposed CIMSR-DCSK-CC system are derived over additive white Gaussian noise(AWGN)and multipath Rayleigh fading channels.Compared with the conventional DCSKCC system and SR-DCSK-CC system,the proposed CIM-SR-DCSK-CC system can significantly improve the throughput without deteriorating any BER performance.As a consequence,the proposed system is very promising for the applications of the 6G-enabled lowpower and high-rate communication.展开更多
Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The ...Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.展开更多
The demonstration of a higher data rate transmission system was amajor aspect to be considered by researchers in recent years. The most relevantaspect to be studied and analyzed is the need for a reliable system to ha...The demonstration of a higher data rate transmission system was amajor aspect to be considered by researchers in recent years. The most relevantaspect to be studied and analyzed is the need for a reliable system to handlenonlinear impairments and reduce them. Therefore, this paper examines theinfluence of Four-Wave Mixing (FWM) impairment on the proposed highdata rate Dual polarization–Differential Quadrature phase shift keying (DPDQPSK)system using the Optisystem software. In the beginning, the impactof varied input power on the proposed system’s performance was evaluated interms of QF and BER metrics. More power is used to improve system performance.However, increasing power would raise theFWMeffects. Accordingly,a−10dBminput power and the proposed system are used to reduce the impactof FWM. Additionally, a hybrid amplification method is proposed to enhancesystem performance by utilizing the major amplification methods of erbiumdopedfiber amplifier (EDFA): semiconductor optical amplifier (SOA) andRadio optical amplifier (ROA). The evaluation demonstrates that the OAEDFAoutperformed the other two key amplification techniques of (EDFASOA)and (EDFA-ROA) in improving Quality factor (QF) and Bit error rate(BER) system results for all distances up to 720 km. Consequently, the methodcontributes to minimizing the impact of FWM. In the future, other forms ofnonlinearity will be investigated and studied to quantify their impact on theproposed system.展开更多
In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compens...In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compensation capabilities of the hybrid carrier system for channel fading through the design of the signal power distribution,which has greatly reduced the probability of high-power distortion of the signal and improved the bit error rate performance as a result.Theoretical analysis has shown the superiority of the extended hybrid carrier system.With a lower cost of computational complexity increment,the proposed scheme obtains a performance improvement without occupying additional time-frequency physical resources.Compared with the existing hybrid carrier scheme,numerical simulation results have shown that the proposed extended hybrid carrier scheme has better anti-fading performance under the doubly-selective channel and improves the reliability of the wireless communication system effectively.展开更多
Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for ...Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.展开更多
The sparse code multiple access(SCMA)scheme is a Non-Orthogonal Multiple Access(NOMA)type of scheme that is used to handle the uplink com-ponent of mobile communication in the current generation.A need of the 5G mobil...The sparse code multiple access(SCMA)scheme is a Non-Orthogonal Multiple Access(NOMA)type of scheme that is used to handle the uplink com-ponent of mobile communication in the current generation.A need of the 5G mobile network is the ability to handle more users.To accommodate this,the SCMA allows each user to deploy a variety of sub-carrier broadcasts,and several consumers may contribute to the same frequency using superposition coding.The SCMA approach,together with codebook design for each user,is used to improve channel efficiency through better management of the available spectrum.How-ever,developing a codebook with a greater number of value sets is still another challenge.With enhanced techniques of encoding and decoding for 5G networks,mapping the multidimensional constellations in the SCMA system plays a signif-icant role in improving the system performance and enhancing the overall system performance.The creation of a codebook utilizing the SCMA approach in con-junction with the lattice theory is suggested in this study.The prototype is shaped using a popular lattice,such as A n and D n,as the basis.Afterward,from the primary lattice constellation,the multidimensional complex mother constellation with the most noticeable variance in power is discovered.The lattice-based cod-ing is generated by combining the codebooks with the mother constellation,and the codes in the matrices are mapped by rotating the constellations in this context.The suggested technique,in conjunction with the investigation of novel SCMA codebook sets,provides improved performance in terms of Bit Error Rate(BER)and complexity with regard to Signal to Noise Ratio(SNR).Finally,the bit error rate is reduced for various SNRs during transmission in the channel.展开更多
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi...The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.展开更多
The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a c...The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER).展开更多
Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, ...Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwisequasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First,two transmit signals are detected by the quasi-ZF or the quasiMMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate( BER) performance of the proposed algorithms is compared with that of the current known decoding algorithms.Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results showthat the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasiMMSE algorithms. The BER performance of the pairwise-quasiZF( pairwise-quasi-MMSE) decoder is equivalent to the pairwiseZF( pairwise-MMSE) decoder, while the computational complexity is significantly reduced.展开更多
Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM m...Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.展开更多
This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic ac...This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic access method.The aggregate throughput of a practical wireless local area network (WLAN) strongly depends on the channel conditions.In a real radio environment,the received signal power at the access point from a station is subjected to deterministic path loss,shadowing,and fast multipath fading.The binary exponential backoff (BEB) mechanism of IEEE 802.11 DCF severely suffers from more channel idle time under high bit error rate (BER).To alleviate the low performance of IEEE 802.11 DCF,a new mechanism is introduced,which greatly outperforms the existing methods under a high BER.A multidimensional Markov chain model is used to characterize the behavior of DCF in order to account both non-ideal channel conditions and capture effects.展开更多
The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder nee...The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.展开更多
文摘Standard automatic dependent surveillance broadcast (ADS-B) reception algorithms offer considerable performance at high signal-to-noise ratios (SNRs). However, the performance of ADS-B algorithms in applications can be problematic at low SNRs and in high interference situations, as detecting and decoding techniques may not perform correctly in such circumstances. In addition, conventional error correction algorithms have limitations in their ability to correct errors in ADS-B messages, as the bit and confidence values may be declared inaccurately in the event of low SNRs and high interference. The principal goal of this paper is to deploy a Long Short-Term Memory (LSTM) recurrent neural network model for error correction in conjunction with a conventional algorithm. The data of various flights are collected and cleaned in an initial stage. The clean data is divided randomly into training and test sets. Next, the LSTM model is trained based on the training dataset, and then the model is evaluated based on the test dataset. The proposed model not only improves the ADS-B In packet error correction rate (PECR), but it also enhances the ADS-B In terms of sensitivity. The performance evaluation results reveal that the proposed scheme is achievable and efficient for the avionics industry. It is worth noting that the proposed algorithm is not dependent on conventional algorithms’ prerequisites.
文摘The theoretical lower bounds on mean squared channel estimation errors for typical fading channels are presented by the infinite-length and non-causal Wiener filter and the exact closed-form expressions of the lower bounds for different channel Doppler spectra are derived. Based on the obtained lower bounds on mean squared channel estimation errors, the limits on bit error rate (BER) for maximal ratio combining (MRC) with Gaussian distributed weighting errors on independent and identically distributed (i. i. d) fading channels are presented. Numerical results show that the BER performances of ideal MRC are the lower bounds on the BER performances of non-ideal MRC and deteriorate as the maximum Doppler frequency increases or the SNR of channel estimate decreases.
基金supported by National Natural Science Foundation of China(No.62171445)。
文摘Directional modulation(DM)is one of the most promising secure communication techniques.However,when the eavesdropper is co-located with the legitimate receiver,the conventional DM has the disadvantages of weak anti-scanning capability,anti-deciphering capability,and low secrecy rate.In response to these problems,we propose a twodimensional multi-term weighted fractional Fourier transform aided DM scheme,in which the legitimate receiver and the transmitter use different transform terms and transform orders to encrypt and decrypt the confidential information.In order to further lower the probability of being deciphered by an eavesdropper,we use the subblock partition method to convert the one-dimensional modulated signal vector into a twodimensional signal matrix,increasing the confusion of the useful information.Numerical results demonstrate that the proposed DM scheme not only provides stronger anti-deciphering and anti-scanning capabilities but also improves the secrecy rate performance of the system.
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
基金supported in part by The Science and Technology Development Fund, Macao SAR, China (0108/2020/A3)in part by The Science and Technology Development Fund, Macao SAR, China (0005/2021/ITP)the Deanship of Scientific Research at Taif University for funding this work。
文摘With the development of communication systems, modulation methods are becoming more and more diverse. Among them, quadrature spatial modulation(QSM) is considered as one method with less capacity and high efficiency. In QSM, the traditional signal detection methods sometimes are unable to meet the actual requirement of low complexity of the system. Therefore, this paper proposes a signal detection scheme for QSM systems using deep learning to solve the complexity problem. Results from the simulations show that the bit error rate performance of the proposed deep learning-based detector is better than that of the zero-forcing(ZF) and minimum mean square error(MMSE) detectors, and similar to the maximum likelihood(ML) detector. Moreover, the proposed method requires less processing time than ZF, MMSE,and ML.
基金Supported by National Natural Science Foundation of China (No. 60302018).
文摘Concerning inter4v mode employed widely in MPEG-4 video, a new temporal error concealment scheme for MPEG-4 video sequences is proposed, which can selectively interpolate one or four motion vectors (MVs) for the missing macroblock ( MB ) according to the estimated MB coding mode. Performance of the proposed scheme is compared with the existing schemes with multiple testing sequences at different bit error rates. Experimental results show that the proposed algorithm can mask the impairments caused by transmission errors more efficiently than 0 MV and average MV methods by consuming more time for different bit error rates. It has an acceptable image quality close to that obtained by the selective motion vector matching ( SMVM ) algorithm, while taking less than half of cycles of operations. The proposed concealment scheme is suitable for low complexity video real-time implementations.
基金Project(2012CB316100)supported by the National Basic Research Program of ChinaProjects(K50511010005,K50511010015)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(B08038)supported by the"111"Program of China
文摘Quadrature signaling-based cooperative transmission is an efficient and simple scheme to obtain spatial diversity.However,this scheme causes date rate loss compared with direct transmission.In this work,our focus is on recovering from the data rate loss while simultaneously achieving spatial diversity.Particularly,an enhanced quadrature signaling-based cooperative scheme was designed,which can realize full-rate transmission by using the signal space diversity(SSD)technique.Then,accurate bit error rate(BER)expression for the full-rate scheme was derived over independent and non-identically distributed(INID)Rayleigh fading channels.Specifically,a closed-form BER expression is obtained,which is quite tight over the whole SNR range,and thus allows for rapid and efficient evaluation of system performance under various channel conditions.Moreover,an asymptotic approximation of the BER was derived to show that the full-rate scheme can achieve full diversity.Simulation results verify the tightness of the analysis and show that the full-rate scheme significantly outperforms the traditional quadrature signaling-based scheme by about 2 dB with the same complexity order.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61171147 and 60702022)
文摘In this paper, we discuss the effects of error feedback on the output of a nonlinear bistable system with stochastic resonance. The bit error rate is employed to quantify the performance of the system. The theoretical analysis and the numerical simulation are presented. By investigating the performances of the nonlinear systems with different strengths of error feedback, we argue that the presented system may provide guidance for practical nonlinear signal processing.
基金supported in part by the NSF of China under Grant 62322106,62071131 and 62171135the Guangdong Basic and Applied Basic Research Foundation under Grant 2022B1515020086+2 种基金the NSF of Guangdong Province under Grant 2019A1515011465the International Collaborative Research Program of Guangdong Science and Technology Department under Grant 2022A0505050070the Industrial R&D Project of Haoyang Electronic Co.,Ltd.under Grant 2022440002001494.
文摘This paper proposes a high-throughput short reference differential chaos shift keying cooperative communication system with the aid of code index modulation,referred to as CIM-SR-DCSK-CC system.In the proposed CIM-SR-DCSK-CC system,the source transmits information bits to both the relay and destination in the first time slot,while the relay not only forwards the source information bits but also sends new information bits to the destination in the second time slot.To be specific,the relay employs an N-order Walsh code to carry additional log_(2)N information bits,which are superimposed onto the SRDCSK signal carrying the decoded source information bits.Subsequently,the superimposed signal carrying both the source and relay information bits is transmitted to the destination.Moreover,the theoretical bit error rate(BER)expressions of the proposed CIMSR-DCSK-CC system are derived over additive white Gaussian noise(AWGN)and multipath Rayleigh fading channels.Compared with the conventional DCSKCC system and SR-DCSK-CC system,the proposed CIM-SR-DCSK-CC system can significantly improve the throughput without deteriorating any BER performance.As a consequence,the proposed system is very promising for the applications of the 6G-enabled lowpower and high-rate communication.
基金the grant names“ProfessionalDevelopment Research University Grant”(“UTM Vot No.05E69”and“TDR grant Vot No.05G27”).
文摘Visible light communication(VLC),which is a prominent emerging solution that complements the radio frequency(RF)technology,exhibits the potential to meet the demands of fifth-generation(5G)and beyond technologies.The random movement of mobile terminals in the indoor environment is a challenge in the VLC system.The model of optical attocells has a critical role in the uniform distribution and the quality of communication links in terms of received power and signal-to-noise ratio(SNR).As such,the optical attocells positions were optimized in this study with a developed try and error(TE)algorithm.The optimized optical attocells were examined and compared with previous models.This novel approach had successfully increased minimum received power from−1.29 to−0.225 dBm,along with enhanced SNR performance by 2.06 dB.The bit error rate(BER)was reduced to 4.42×10−8 and 6.63×10−14 by utilizing OOK-NRZ and BPSK modulation techniques,respectively.The optimized attocells positions displayed better uniform distribution,as both received power and SNR performances improved by 0.45 and 0.026,respectively.As the results of the proposed model are optimal,it is suitable for standard office and room model applications.
基金the Ministry of Higher Education (MOHE)in Malaysia,Universiti Teknologi Malaysia (UTM),and Universitas Sriwijaya (UNSRI)for sponsoring the Matching Grant Research between UTM and UNSRI (R.J.130000.7309.4B571).
文摘The demonstration of a higher data rate transmission system was amajor aspect to be considered by researchers in recent years. The most relevantaspect to be studied and analyzed is the need for a reliable system to handlenonlinear impairments and reduce them. Therefore, this paper examines theinfluence of Four-Wave Mixing (FWM) impairment on the proposed highdata rate Dual polarization–Differential Quadrature phase shift keying (DPDQPSK)system using the Optisystem software. In the beginning, the impactof varied input power on the proposed system’s performance was evaluated interms of QF and BER metrics. More power is used to improve system performance.However, increasing power would raise theFWMeffects. Accordingly,a−10dBminput power and the proposed system are used to reduce the impactof FWM. Additionally, a hybrid amplification method is proposed to enhancesystem performance by utilizing the major amplification methods of erbiumdopedfiber amplifier (EDFA): semiconductor optical amplifier (SOA) andRadio optical amplifier (ROA). The evaluation demonstrates that the OAEDFAoutperformed the other two key amplification techniques of (EDFASOA)and (EDFA-ROA) in improving Quality factor (QF) and Bit error rate(BER) system results for all distances up to 720 km. Consequently, the methodcontributes to minimizing the impact of FWM. In the future, other forms ofnonlinearity will be investigated and studied to quantify their impact on theproposed system.
基金supported in part by the National Natural Science Foundation of China under Grant 61901140,in part by the National Natural Science Foundation of China under Grant 62171151in part by the Science and Technology on Communication Networks Laboratory under Grant 6142104190203in part by the Fundamental Research Funds for the Central Universities under Grant HIT.OCEF.2021012。
文摘In this paper,we propose an extended hybrid carrier system based on the weighted fractional Fourier transform to ensure the reliability of wireless communication.The proposed scheme improves the dispersion and compensation capabilities of the hybrid carrier system for channel fading through the design of the signal power distribution,which has greatly reduced the probability of high-power distortion of the signal and improved the bit error rate performance as a result.Theoretical analysis has shown the superiority of the extended hybrid carrier system.With a lower cost of computational complexity increment,the proposed scheme obtains a performance improvement without occupying additional time-frequency physical resources.Compared with the existing hybrid carrier scheme,numerical simulation results have shown that the proposed extended hybrid carrier scheme has better anti-fading performance under the doubly-selective channel and improves the reliability of the wireless communication system effectively.
基金supported by Professional Development Research University Grant(UTM Vot No.06E59).
文摘Visible light communication(VLC)has a paramount role in industrial implementations,especially for better energy efficiency,high speed-data rates,and low susceptibility to interference.However,since studies on VLC for industrial implementations are in scarcity,areas concerning illumination optimisation and communication performances demand further investigation.As such,this paper presents a new modelling of light fixture distribution for a warehouse model to provide acceptable illumination and communication performances.The proposed model was evaluated based on various semi-angles at half power(SAAHP)and different height levels for several parameters,including received power,signal to noise ratio(SNR),and bit error rate(BER).The results revealed improvement in terms of received power and SNR with 30 Mbps data rate.Various modulations were studied to improve the link quality,whereby better average BER values of 5.55×10^(−15) and 1.06×10^(−10) had been achieved with 4 PAM and 8 PPM,respectively.The simulation outcomes are indeed viable for the practical warehouse model.
文摘The sparse code multiple access(SCMA)scheme is a Non-Orthogonal Multiple Access(NOMA)type of scheme that is used to handle the uplink com-ponent of mobile communication in the current generation.A need of the 5G mobile network is the ability to handle more users.To accommodate this,the SCMA allows each user to deploy a variety of sub-carrier broadcasts,and several consumers may contribute to the same frequency using superposition coding.The SCMA approach,together with codebook design for each user,is used to improve channel efficiency through better management of the available spectrum.How-ever,developing a codebook with a greater number of value sets is still another challenge.With enhanced techniques of encoding and decoding for 5G networks,mapping the multidimensional constellations in the SCMA system plays a signif-icant role in improving the system performance and enhancing the overall system performance.The creation of a codebook utilizing the SCMA approach in con-junction with the lattice theory is suggested in this study.The prototype is shaped using a popular lattice,such as A n and D n,as the basis.Afterward,from the primary lattice constellation,the multidimensional complex mother constellation with the most noticeable variance in power is discovered.The lattice-based cod-ing is generated by combining the codebooks with the mother constellation,and the codes in the matrices are mapped by rotating the constellations in this context.The suggested technique,in conjunction with the investigation of novel SCMA codebook sets,provides improved performance in terms of Bit Error Rate(BER)and complexity with regard to Signal to Noise Ratio(SNR).Finally,the bit error rate is reduced for various SNRs during transmission in the channel.
基金funded by King Saud University,Riyadh,Saudi Arabia.Researchers Supporting Proiect Number(RSP2023R167)King Saud University,Riyadh,Saudi Arabia.
文摘The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.
文摘The next step in mobile communication technology,known as 5G,is set to go live in a number of countries in the near future.New wireless applica-tions have high data rates and mobility requirements,which have posed a chal-lenge to mobile communication technology researchers and designers.5G systems could benefit from the Universal Filtered Multicarrier(UFMC).UFMC is an alternate waveform to orthogonal frequency-division multiplexing(OFDM),infiltering process is performed for a sub-band of subcarriers rather than the entire band of subcarriers Inter Carrier Interference(ICI)between neighbouring users is reduced via the sub-bandfiltering process,which reduces out-of-band emissions.However,the UFMC system has a high Peak-to-Average Power Ratio(PAPR),which limits its capabilities.Metaheuristic optimization based Selective mapping(SLM)is used in this paper to optimise the UFMC-PAPR.Based on the cognitive behaviour of crows,the research study suggests an innovative metaheuristic opti-mization known as Crow Search Algorithm(CSA)for SLM optimization.Com-pared to the standard UFMC,SLM-UFMC system,and SLM-UFMC with conventional metaheuristic optimization techniques,the suggested technique sig-nificantly reduces PAPR.For the UFMC system,the suggested approach has a very low Bit Error Rate(BER).
基金The National Natural Science Foundation of China(No.6157110861201248)+1 种基金the Open Research Fund of National Mobile Communications Research Laboratory of China(No.2011D18)China Postdoctoral Science Foundation(No.2012M511175)
文摘Due to the high complexity of the pairwise decoding algorithm and the poor performance of zero forcing( ZF) /minimum mean square error( MMSE) decoding algorithm, two low-complexity suboptimal decoding algorithms, called pairwisequasi-ZF and pairwise-quasi-MMSE decoders, are proposed. First,two transmit signals are detected by the quasi-ZF or the quasiMMSE algorithm at the receiver. Then, the two detected signals as the decoding results are substituted into the two pairwise decoding algorithm expressions to detect the other two transmit signals. The bit error rate( BER) performance of the proposed algorithms is compared with that of the current known decoding algorithms.Also, the number of calculations of ZF, MMSE, quasi-ZF and quasi-MMSE algorithms is compared with each other. Simulation results showthat the BER performance of the proposed algorithms is substantially improved in comparison to the quasi-ZF and quasiMMSE algorithms. The BER performance of the pairwise-quasiZF( pairwise-quasi-MMSE) decoder is equivalent to the pairwiseZF( pairwise-MMSE) decoder, while the computational complexity is significantly reduced.
基金supported by the National Natural Science Foundation of China(Grant No.62305388)the Postgraduate Scientific Research Innovation Project of Hunan Province(Grant No.QL20230007).
文摘Orbital-angular-momentum(OAM)multiplexing technology offers a significant dimension to enlarge communication capacity in free-space optical links.The coherent beam combining(CBC)system can simultaneously realize OAM multiplexing and achieve high-power laser output,providing substantial advantages for long-distance communication.Herein,we present an integrated CBC system for freespace optical links based on OAM multiplexing and demultiplexing technologies for the first time,to the best of our knowledge.A method to achieve flexible OAM multiplexing and efficient demultiplexing based on the CBC system is proposed and demonstrated both theoretically and experimentally.The experimental results exhibit a low bit error rate of 0.47%and a high recognition precision of 98.58%throughout the entire data transmission process.By employing such an ingenious strategy,this work holds promising prospects for enriching ultra-long-distance structured light communication in the future.
文摘This paper presents a performance study of the distributed coordination function (DCF) of 802.11 networks considering erroneous channel and capture effects under non-saturated traffic conditions employing a basic access method.The aggregate throughput of a practical wireless local area network (WLAN) strongly depends on the channel conditions.In a real radio environment,the received signal power at the access point from a station is subjected to deterministic path loss,shadowing,and fast multipath fading.The binary exponential backoff (BEB) mechanism of IEEE 802.11 DCF severely suffers from more channel idle time under high bit error rate (BER).To alleviate the low performance of IEEE 802.11 DCF,a new mechanism is introduced,which greatly outperforms the existing methods under a high BER.A multidimensional Markov chain model is used to characterize the behavior of DCF in order to account both non-ideal channel conditions and capture effects.
基金supported by Beijing Natural Science Foundation(4102050)the National Natural Science of Foundation of China(NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.