With the increasing maturity of automated guided vehicles(AGV)technology and the widespread application of flexible manufacturing systems,enhancing the efficiency of AGVs in complex environments has become crucial.Thi...With the increasing maturity of automated guided vehicles(AGV)technology and the widespread application of flexible manufacturing systems,enhancing the efficiency of AGVs in complex environments has become crucial.This paper analyzes the challenges of path planning and scheduling in multi-AGV systems,introduces a map-based path search algorithm,and proposes the BFS algorithm for shortest path planning.Through optimization using the breadth-first search(BFS)algorithm,efficient scheduling of multiple AGVs in complex environments is achieved.In addition,this paper validated the effectiveness of the proposed method in a production workshop experiment.The experimental results show that the BFS algorithm can quickly search for the shortest path,reduce the running time of AGVs,and significantly improve the performance of multi-AGV scheduling systems.展开更多
In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocatio...In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.展开更多
A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in or...A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in order to improve the global search ability of SOA.Four algorithms,i.e.particle swarm optimization(PSO),SOA,GA and quantum-behaved particle swarm optimization(GA-QPSO)and GA-SOA are used to process the simulation and experimental data of Brillouin scattering spectrum(BSS)at different temperatures.The results show that GA-SOA improves the accuracy of extracting the center frequency shift and the minimum center frequency of Brillouin scattering spectrum compared with other three algorithms.The shift error is 0.203 MHz.Therefore,GA-SOA can be applied to the accurate extraction of BSS characteristics.展开更多
This paper introduces the general process of the search algorithm Structure through the knight problem. According to the characteristics of the problem, we detailed discuss the DFS(Depth First Search) algorithm and ...This paper introduces the general process of the search algorithm Structure through the knight problem. According to the characteristics of the problem, we detailed discuss the DFS(Depth First Search) algorithm and BFS(Breadth First Search) algorithm, and combine the two algorithms together to solve the knights coverage problem. This article has a good reference for the mixed-use scenarios which requires a variety of search algorithms.展开更多
文摘With the increasing maturity of automated guided vehicles(AGV)technology and the widespread application of flexible manufacturing systems,enhancing the efficiency of AGVs in complex environments has become crucial.This paper analyzes the challenges of path planning and scheduling in multi-AGV systems,introduces a map-based path search algorithm,and proposes the BFS algorithm for shortest path planning.Through optimization using the breadth-first search(BFS)algorithm,efficient scheduling of multiple AGVs in complex environments is achieved.In addition,this paper validated the effectiveness of the proposed method in a production workshop experiment.The experimental results show that the BFS algorithm can quickly search for the shortest path,reduce the running time of AGVs,and significantly improve the performance of multi-AGV scheduling systems.
文摘In cloud computing Resource allocation is a very complex task.Handling the customer demand makes the challenges of on-demand resource allocation.Many challenges are faced by conventional methods for resource allocation in order tomeet the Quality of Service(QoS)requirements of users.For solving the about said problems a new method was implemented with the utility of machine learning framework of resource allocation by utilizing the cloud computing technique was taken in to an account in this research work.The accuracy in the machine learning algorithm can be improved by introducing Bat Algorithm with feature selection(BFS)in the proposed work,this further reduces the inappropriate features from the data.The similarities that were hidden can be demoralized by the Support Vector Machine(SVM)classifier which is also determine the subspace vector and then a new feature vector can be predicted by using SVM.For an unexpected circumstance SVM model can make a resource allocation decision.The efficiency of proposed SVM classifier of resource allocation can be highlighted by using a singlecell multiuser massive Multiple-Input Multiple Output(MIMO)system,with beam allocation problem as an example.The proposed resource allocation based on SVM performs efficiently than the existing conventional methods;this has been proven by analysing its results.
基金Supported by the National Natural Science Foundation of China(No.11673040,61675176,51675461)‘Xinrui Gongcheng’ Talent Project of Yanshan University of Chinathe China Scholarship Council(No.201708130010)
文摘A new hybrid optimization method based on genetic algorithm(GA)and seeker optimization algorithm(SOA)is presented in this paper.The hybrid algorithm optimizes SOA by using crossover and mutation operations in GA in order to improve the global search ability of SOA.Four algorithms,i.e.particle swarm optimization(PSO),SOA,GA and quantum-behaved particle swarm optimization(GA-QPSO)and GA-SOA are used to process the simulation and experimental data of Brillouin scattering spectrum(BSS)at different temperatures.The results show that GA-SOA improves the accuracy of extracting the center frequency shift and the minimum center frequency of Brillouin scattering spectrum compared with other three algorithms.The shift error is 0.203 MHz.Therefore,GA-SOA can be applied to the accurate extraction of BSS characteristics.
文摘This paper introduces the general process of the search algorithm Structure through the knight problem. According to the characteristics of the problem, we detailed discuss the DFS(Depth First Search) algorithm and BFS(Breadth First Search) algorithm, and combine the two algorithms together to solve the knights coverage problem. This article has a good reference for the mixed-use scenarios which requires a variety of search algorithms.