Contour farming technology plays a key role in reducing soil erosion,enhancing water use efficiency,and fostering sustain-able agricultural development,Despite being a straightforward yet efficacious farming technique...Contour farming technology plays a key role in reducing soil erosion,enhancing water use efficiency,and fostering sustain-able agricultural development,Despite being a straightforward yet efficacious farming technique,it has not seen widespread implement-ation in China.Considering the deteriorating quality of arable lands in the Black Soil Region of Northeast China(BSR-NEC),it is ne-cessary to investigate spatial patterns and identify suitable areas for contour farming in this region.To achieve this objective,spatial autocorrelation and grouping analysis methods were employed to classify the land into four categories of suitability for contour farming:highly suitable,moderately suitable,generally suitable,and unsuitable.The results reveal that:1)the contour farming suitable area in BSR-NEC covers 89861.32 km^(2),accounting for 21.59%of arable land as of 2020.Heilongjiang Province owns the largest suitable area of 32853.68 km^(2),and Inner Mongolia has the highest proportion of 28.89%.2)In terms of the spatial distribution,regions with higher suitability for contour farming are concentrated in the Da Hinggan Mountains region,particularly Nenjiang City(Heilongjiang Province),which has the highest area of 2593.07 km^(2).Areas with a high proportion of suitable arable lands for contour farming are mainly found in the Da Hinggan Mountains and Changbai Mountains regions,with Ergun City(Inner Mongolia)having the highest pro-portion at 47.2%.Regions with higher suitability and proportion are concentrated in the Da Hinggan Mountains region,primarily cover-ing the Inner Mongolia and Heilongjiang.3)Regarding spatial clustering,both the area and proportion of suitable contour farming areas exhibit noticeable clustering effects,though not entirely consistent.4)Group analysis results designate 148 counties in BSR-NEC as highly suitable areas,predominantly located in the Changbai Mountains region,Liaodong Peninsula,Hulun Buir Plateau,and the north and south regions of the Da Hinggan Mountains.The zoning of suitable areas for contour farming in BSR-NEC informs the strategic de-velopment of policies and measures,allowing for the implementation of targeted policies in distinct areas suitable for contour farming.This provides a valuable reference for promoting contour farming technology more effectively and efficiently.re effectively and effi-ciently.展开更多
It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cult...It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.展开更多
Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fe...Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fertile farmland there. Regionalization of gully erosion can reveal the spatial distribution and regularity of the development of gully erosion. Based on the eco-geographical regional background features of the black soil area, this study combined the regionalization with influencing factors of the development of gully erosion. GIS spatial analysis, geostatistical analysis, spatial statistics, reclassification, debris polygon processing and map algebra methods were employed. As a result, the black soil area was divided into 12 subregions. The field survey data on type, length, volume and other characteristics indicators of gully erosion were used to calibrate the results. Then the features of every subregion, such as where the gully erosion is, how serious it is, and why it happens and develops, were expounded. The result is not only an essential prerequisite for gully erosion surveys and monitoring, but also an important basis for gully erosion prevention.展开更多
The objective of this paper is to investigate a simple and practical method for soil productivity assessment in the black soil region of Northeast China. Firstly, eight kinds of physicochemical properties for each of ...The objective of this paper is to investigate a simple and practical method for soil productivity assessment in the black soil region of Northeast China. Firstly, eight kinds of physicochemical properties for each of 120 soil samples collected from 25 black soil profiles were analyzed using cluster and correlation analysis. Subsequently, parameter indices were calculated using physicochemical properties. Finally, a modified productivity index (MPI) model were developed and validated. The results showed that the suitable parameters for soil productivity assessment in black soil region of Northeast China were soil available water, soil pH, clay content, and organic matter content. Compared with original productivity index (PI) model, MPI model added clay content and organic matter content in parameters while omitted bulk density. Simulation results of original PI model and MPI model were compared using crop yield of land block where investigated soil profiles were located. MPI model was proven to perform better with a higher significant correlation with maize yield. The correlation equation between MPI and yield was: Y= 3.2002Ln(MP/)+ 10.056, R^2 = 0.7564. The results showed that MPI model was an effective and practical method to assess soil productivity in the research area.展开更多
The black soil region of northeast China is one of the most important grain-producing areas in China. Increasingly severe gully erosion in this region has destroyed much farmland and reduced grain production. We analy...The black soil region of northeast China is one of the most important grain-producing areas in China. Increasingly severe gully erosion in this region has destroyed much farmland and reduced grain production. We analyzed SPOT5 imagery from 2007 and TM imagery from 2008 to describe the distributions of gullies and farmland shelterbelts in Kedong County and to assess the effect of farmland shelterbelts on gully erosion. The ima- gery revealed 2311 gullies with average density of 418.51 m km-2, indicating very serious gully erosion. With increasing slope gradient there was an inverse trend between gully density and shelterbelt density, indicating that farmland shelterbelts can prevent gully erosion. The defense effect of farmland shelterbelts against gullyerosion varied with distance: for distances 〈120 m, the defense effect was consistent and very strong; for distances of 120-240 m, a weak linear decrease was found in the defense effect; and for distances 〉240 m, the defense effect of the shelterbelts was significantly weaker. We recommend an optimal planting density of farmland shel- terbelts for the prevention of gully erosion at 1100-1300 m km-2.展开更多
As the population continues to shrink in the black soil region of Northeast China since 2000,it is critical to master the impact of population shrinkage on rural functions to realize rural revitalization and sustainab...As the population continues to shrink in the black soil region of Northeast China since 2000,it is critical to master the impact of population shrinkage on rural functions to realize rural revitalization and sustainable development.In this study,we focused on the impacts of depopulation on the evolution and interrelationship of rural subfunctions.Based on the rural function indexes system,the TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)method,spatial analysis method,and mathematical statistics analysis method were used to summarize the spatial and temporal characteristics of rural function development,as well as the effect of population shrinkage in the typical black soil region of Northeast China.The results showed that depopulation varied in the extent and duration between the forested region and plain areas,which both impacted the trajectories of rural subfunctions evolution.For the economic development function and ecological conservation function,the effect of continuous slight depopulation was beneficial,while the effect of rapid depopulation was adverse,which was exactly opposite to the agricultural production function.All forms of population shrinkage were conducive to the development of the social security function.With the deepening population shrinkage,depopulation mainly promoted the collaborative development between subfunctions in this study,except the relationship between agricultural production and social security function.But effects of depopulation on the interrelationship of rural subfunctions varied between the forested region and plain areas in some cases.The results provided evidence for the cognition that population shrinkage had complicated effects on rural subfunctions.展开更多
Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this st...Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this study,320 counties in the black soil region of Northeast China(BSRNC)represent the research units used to construct the CQE system measuring the soil properties(SP),cultivated land productivity(CLP),ecological environment(EE)and social economy(SE).The total of 19 factors were selected to calculate the integrated fertility index(IFI)and divided into grades.Simultaneously,we used the coupling coordination degree model to comprehensively analyze the spatial pattern of the cultivated land quality(CLQ)in the BSRNC,and use the structural equation model(SEM)to analyze the driving mechanism.The results show the following:1)The CLQ of 262 counties in the BSRNC is in a state of coupling and coordination,and the coupling and coordination degree presents a spatial distribution pattern of‘high in the southwest and northeast,low in the northwest and southeast’.The coordinated development degree of 271 counties is between 0.4 and 0.6,which is in a transitional state between coordination and disorder.2)The CLQ in the BSRNC is generally good,with an average grade of 3.High-quality cultivated land accounts for 58.45%of all counties,middle-and upper-quality cultivated land accounts for 27.05%,and poor-quality cultivated land accounts for 14.49%.3)The SEM analysis shows that the SP,CLP,EE,and SE all influence the CLQ.Among them,the SP has the largest driving force on the CLQ,while the SE has the smallest driving force on it.The results confirm that the main factors affecting the evaluation results are crop productivity level,normalized difference vegetation index,ratio vegetation index,difference vegetation index,and organic carbon content.When implementing protection measures in counties with a low CLQ,considering a balanced coordination of multiple systems and reasonably controlling the quality degradation are important.This study provides the current situation and driving factors of the CLQ in the BSRNC and will play an important role in black soil governance and utilization.展开更多
The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security ...The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security of this region.In this paper,based on the daily observation data of 124 meteorological stations in study area from 1961 to 2020,seasonal and monthly wind erosion climate factor(C)in spring(March to May)were calculated by using the method proposed by the Food and Agriculture Organization of the United Nations(FAO),the wind erosion characterization in spring were systematically analyzed based on C by various statistical analysis methods.The results showed that in the past 60 years,spring wind erosion climate factor(CSp)and monthly C of the whole region and each province(region)all showed highly significant decreasing trend,but they began to show rebounded trend in the middle or late 2000s.CSp of the study area showed a significant upward trend since 2008 with an increase of 4.59(10a)^(-1).The main contributors to this upward trend are the changes of C in March and in April.For the four provinces(regions),CSp in Heilongjiang,Jilin,Liaoning and eastern Inner Mongolia all showed rebounded since 2008,2011,2008 and 2009,respectively.The rebounded trend of CSp in eastern Inner Mongolia was the most obvious with a tendency rate of 11.27(10a)^(-1),and its mutation occurred after 1984.The rebound trend of CSp in Heilongjiang Province takes the second place,with a trend rate of 4.72(10a)^(-1),but there’s no obvious time mutation characteristics.The spatial characteristics of CSpand monthly C are similar,showing decreasing characteristics centered on the typical black soil belt of Northeast China.Compared with 1961-1990,in the period from 1991 to 2020,the proportion of high value areas(CSp>35,monthly C>10)has decreased to varying degrees,while the proportion of low value areas(CSp≤10,monthly C≤4)has increased.The trends of seasonal and monthly C in 82.2%~87.7%of the stations show significant decreases at 95%confidence level.CSp is closely related to wind speed at 2m height,temperature difference,minimum temperature and precipitation in the same period,of which the correlation between CSp and wind speed is the strongest,indicating that the main control factor for CSp in the study area is wind speed,but the impact of the change of temperature and precipitation on CSp cannot be ignored.展开更多
In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In a...In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.展开更多
The northeastern China is an important commodity grain region in China,as well as a notable corn belt and major soybean producing area.It thus plays a significant role in the national food security system.However,larg...The northeastern China is an important commodity grain region in China,as well as a notable corn belt and major soybean producing area.It thus plays a significant role in the national food security system.However,large-scale land reclamation and non-optimum farming practices give rise to soil degradation in the region.This study analyzed the food security issues coupled with global climate change in the northeastern China during 1980–2000,which is the period of modern agriculture.The results of statistical data show that the arable land area shrank markedly in 1992,and then increased slowly,while food production generally continually increased.The stable grain yield was due to the increase of applied fertilizer and irrigated areas.Soil degradation in the northeastern China includes severe soil erosion,reduced soil nutrients,a thinner black soil layer,and deterioration of soil physical properties.The sustainable development of the northeastern China is influenced by natural-artificial binary disturbance factors which consist of meteorological conditions,climate changes,and terrain factors as well as soil physical and chemical properties.Interactions between the increasing temperature and decreasing precipitation in the region led to reduced accumulation of soil organic matter,which results in poor soil fertility.Human-induced factors,such as large-scale land reclamation and non-optimum farming practices,unsuitable cultivation systems,dredging,road building,illegal land occupation,and extensive use of fertilizers and pesticides,have led to increasingly severe soil erosion and destruction.Solutions to several problems of soil degradation in this region requiring urgent settlement are proposed.A need for clear and systematic recognition and recording of land use changes,land degradation,food production and climate change conditions is suggested,which would provide a reference for food security studies in the northeastern China.展开更多
The data of cultivated land quality monitoring sites,and the current situations and evolution trend of soil organic matter in cultivated land in Northeast China were analyzed.Then,the causes for low organic matter con...The data of cultivated land quality monitoring sites,and the current situations and evolution trend of soil organic matter in cultivated land in Northeast China were analyzed.Then,the causes for low organic matter content were discussed.Finally,it came up with pertinent soil improvement recommendations,including actively promoting the quality protection technology model of cultivated land such as straw returning in accordance with local conditions,expanding organic fertilizer sources and increasing application of organic fertilizers,implementing reasonable crop rotation,planting green manure crops such as legumes,and realizing the combination of land use and land cultivation,establishing a reasonable fertilization system,combining organic and inorganic fertilizers with scientific fertilization,increasing fertilizer efficiency and reducing the application of chemical fertilizers,increasing financial investment and promoting the integration of funds related to cultivated land protection.展开更多
Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Nort...Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Northeast China, an empirically determined, default Tvalue of 200 (t/km2.a) is used for designing land restoration strategies for different types of soils. The ob- jective of this study was to provide a methodology to calculate a quantitative T for different black soil species. A field investigation was conducted to determine the typical soil profiles of 21 black soil species in the study area and a quantitative methodology based on a modified soil productivity index model was established to calculate the Tvalues. These values, which varied from 68 t/km2.a to 358 t/km2-a, yielded an average Tvalue of 141 t/km2.a for the 21 soil species. This is 29.5% lower than the current national standard T value. Two significant factors that influenced the T value were soil thickness and vulnerability to erosion. An acceptable reduction rate of soil productivity over a planned time period of 1% is recommended as necessary for maintaining long-term sustainable soil productivity. Compared with the cur- rently used of regional unified standard T value, the proposed method, which determines T using specific soil profile indices, has more practical implications for effective, sustainable management of soil and water conservation.展开更多
[目的]直观把握东北黑土区沟蚀研究进展与热点,推进东北黑土区沟蚀研究领域的发展。[方法]以CNKI与Web of Siencec数据库中245篇相关文献为对象,利用文献计量的方法,使用CiteSacep软件绘制东北黑土区沟蚀研究知识图谱。[结果]结果表明:...[目的]直观把握东北黑土区沟蚀研究进展与热点,推进东北黑土区沟蚀研究领域的发展。[方法]以CNKI与Web of Siencec数据库中245篇相关文献为对象,利用文献计量的方法,使用CiteSacep软件绘制东北黑土区沟蚀研究知识图谱。[结果]结果表明:(1)黑土区沟蚀研究起步较晚,近十年发文量显著增加,但国际期刊发表成果较少,仅占26%。(2)该领域研究力量主要分布在我国东北,其中水利部松辽流域委员会、北京师范大学、中国科学院东北地理与农业生态研究所、东北农业大学、沈阳农业大学等机构贡献突出、影响较大;张树文是该领域中文发文量最多的学者,刘宝元和伍永秋是英文发文量最多的学者。(3)关键词共现表明,目前对东北黑土区沟蚀的关注重点主要集中在侵蚀沟发育特征、影响因素和沟蚀防治措施等方面。[结论]东北黑土区沟蚀尚未形成完整的研究框架和全面的认识,在未来的研究中,需进一步注重东北黑土区沟蚀形成和发育过程及机理研究,并深入分析地质、地形、水文、人类活动等因素的影响。展开更多
基金Under the auspices of National Key R&D Program of China(No.2021YFD1500100)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA28100400)。
文摘Contour farming technology plays a key role in reducing soil erosion,enhancing water use efficiency,and fostering sustain-able agricultural development,Despite being a straightforward yet efficacious farming technique,it has not seen widespread implement-ation in China.Considering the deteriorating quality of arable lands in the Black Soil Region of Northeast China(BSR-NEC),it is ne-cessary to investigate spatial patterns and identify suitable areas for contour farming in this region.To achieve this objective,spatial autocorrelation and grouping analysis methods were employed to classify the land into four categories of suitability for contour farming:highly suitable,moderately suitable,generally suitable,and unsuitable.The results reveal that:1)the contour farming suitable area in BSR-NEC covers 89861.32 km^(2),accounting for 21.59%of arable land as of 2020.Heilongjiang Province owns the largest suitable area of 32853.68 km^(2),and Inner Mongolia has the highest proportion of 28.89%.2)In terms of the spatial distribution,regions with higher suitability for contour farming are concentrated in the Da Hinggan Mountains region,particularly Nenjiang City(Heilongjiang Province),which has the highest area of 2593.07 km^(2).Areas with a high proportion of suitable arable lands for contour farming are mainly found in the Da Hinggan Mountains and Changbai Mountains regions,with Ergun City(Inner Mongolia)having the highest pro-portion at 47.2%.Regions with higher suitability and proportion are concentrated in the Da Hinggan Mountains region,primarily cover-ing the Inner Mongolia and Heilongjiang.3)Regarding spatial clustering,both the area and proportion of suitable contour farming areas exhibit noticeable clustering effects,though not entirely consistent.4)Group analysis results designate 148 counties in BSR-NEC as highly suitable areas,predominantly located in the Changbai Mountains region,Liaodong Peninsula,Hulun Buir Plateau,and the north and south regions of the Da Hinggan Mountains.The zoning of suitable areas for contour farming in BSR-NEC informs the strategic de-velopment of policies and measures,allowing for the implementation of targeted policies in distinct areas suitable for contour farming.This provides a valuable reference for promoting contour farming technology more effectively and efficiently.re effectively and effi-ciently.
基金Under the auspices of National Natural Science Foundation of China(No.42301296)Postdoctoral Research Foundation of China(No.2022M723130)Key Projects of Social Science Planning Fund of Liaoning Province,China(No.L23AGL001)。
文摘It is of great significance to systematically analyze the cultivated land system resilience(CLSR) for the black soil protection and national food security.The CLSR is impacted by planting structure adjustment and cultivated land quality decline,posing major hidden dangers to food security.It is urgent to evaluate the CLSR at multiple spatio-temporal scales.This study took Liaoning Province in the black soil region of Northeast China as an example.Based on the resilience theory,this study constructed the CLSR evaluation system from the input-feedback perspective at the provincial-scale and the city-scale,and used the rank-sum ratio comprehensive evaluation method(RSR) to analyze the key influencing factors of CLSR in Liaoning Province and its 14 cities from 2000 to 2019.The results showed that:1) the time series changes of CLSR at the provincial-scale and the city-scale in Liaoning Province were similar,both showing an increasing trend.2) The CLSR in Liaoning Province presented a spatial pattern of ‘high in the west and low in the east’ at the city-scale.3) There were seven and six main influencing factors of CLSR at the provincial-scale and the city-scale,respectively.In addition to the net income per capita of rural households,other influencing factors of CLSR were different at the provincial-scale and the city-scale.The feedback factors were dominant at the provincial-scale,and the input factors and feedback factors were dominant at the city-scale.The results could provide a reference for the utilization of black soil and draw on the experience of regional agricultural planning and adjustment.
基金Under the auspices of National Natural Science Foundation of China(No.41301467,41271416)Special Foundation of National Science and Technology Basic Work of China(No.2013FY112800)
文摘Gully erosion is the frequent and main form of soil erosion in the black soil area of the northeastern China, which is one of the most important commodity grain production bases in China. It is encroaching upon the fertile farmland there. Regionalization of gully erosion can reveal the spatial distribution and regularity of the development of gully erosion. Based on the eco-geographical regional background features of the black soil area, this study combined the regionalization with influencing factors of the development of gully erosion. GIS spatial analysis, geostatistical analysis, spatial statistics, reclassification, debris polygon processing and map algebra methods were employed. As a result, the black soil area was divided into 12 subregions. The field survey data on type, length, volume and other characteristics indicators of gully erosion were used to calibrate the results. Then the features of every subregion, such as where the gully erosion is, how serious it is, and why it happens and develops, were expounded. The result is not only an essential prerequisite for gully erosion surveys and monitoring, but also an important basis for gully erosion prevention.
基金supported by the National Natural Science Foundation of China (40671111)
文摘The objective of this paper is to investigate a simple and practical method for soil productivity assessment in the black soil region of Northeast China. Firstly, eight kinds of physicochemical properties for each of 120 soil samples collected from 25 black soil profiles were analyzed using cluster and correlation analysis. Subsequently, parameter indices were calculated using physicochemical properties. Finally, a modified productivity index (MPI) model were developed and validated. The results showed that the suitable parameters for soil productivity assessment in black soil region of Northeast China were soil available water, soil pH, clay content, and organic matter content. Compared with original productivity index (PI) model, MPI model added clay content and organic matter content in parameters while omitted bulk density. Simulation results of original PI model and MPI model were compared using crop yield of land block where investigated soil profiles were located. MPI model was proven to perform better with a higher significant correlation with maize yield. The correlation equation between MPI and yield was: Y= 3.2002Ln(MP/)+ 10.056, R^2 = 0.7564. The results showed that MPI model was an effective and practical method to assess soil productivity in the research area.
基金supported by the National Natural Science Foundation of China(31400612,41271305)the Key Technologies Research and Development Program of Henan Province(142102110147)
文摘The black soil region of northeast China is one of the most important grain-producing areas in China. Increasingly severe gully erosion in this region has destroyed much farmland and reduced grain production. We analyzed SPOT5 imagery from 2007 and TM imagery from 2008 to describe the distributions of gullies and farmland shelterbelts in Kedong County and to assess the effect of farmland shelterbelts on gully erosion. The ima- gery revealed 2311 gullies with average density of 418.51 m km-2, indicating very serious gully erosion. With increasing slope gradient there was an inverse trend between gully density and shelterbelt density, indicating that farmland shelterbelts can prevent gully erosion. The defense effect of farmland shelterbelts against gullyerosion varied with distance: for distances 〈120 m, the defense effect was consistent and very strong; for distances of 120-240 m, a weak linear decrease was found in the defense effect; and for distances 〉240 m, the defense effect of the shelterbelts was significantly weaker. We recommend an optimal planting density of farmland shel- terbelts for the prevention of gully erosion at 1100-1300 m km-2.
基金Under the auspices of China Postdoctoral Science Foundation(No.2022M713130)National Natural Science Foundation of China(No.42101212)Strategic Pilot Science and Technology Project of the Chinese Academy of Sciences(No.XDA28020403)。
文摘As the population continues to shrink in the black soil region of Northeast China since 2000,it is critical to master the impact of population shrinkage on rural functions to realize rural revitalization and sustainable development.In this study,we focused on the impacts of depopulation on the evolution and interrelationship of rural subfunctions.Based on the rural function indexes system,the TOPSIS(Technique for Order Preference by Similarity to an Ideal Solution)method,spatial analysis method,and mathematical statistics analysis method were used to summarize the spatial and temporal characteristics of rural function development,as well as the effect of population shrinkage in the typical black soil region of Northeast China.The results showed that depopulation varied in the extent and duration between the forested region and plain areas,which both impacted the trajectories of rural subfunctions evolution.For the economic development function and ecological conservation function,the effect of continuous slight depopulation was beneficial,while the effect of rapid depopulation was adverse,which was exactly opposite to the agricultural production function.All forms of population shrinkage were conducive to the development of the social security function.With the deepening population shrinkage,depopulation mainly promoted the collaborative development between subfunctions in this study,except the relationship between agricultural production and social security function.But effects of depopulation on the interrelationship of rural subfunctions varied between the forested region and plain areas in some cases.The results provided evidence for the cognition that population shrinkage had complicated effects on rural subfunctions.
基金Under the auspices of National Key R&D Program of China(No.2021YFD1500104-4)National Natural Science Foundation of China(No.42171407,42077242)+1 种基金Natural Science Foundation of Jilin Province(No.20210101098JC)Special Investigation on Basic Science and Technology Resources(No.2021FY100406)。
文摘Cultivated land is an important natural resource to ensure food,ecological and economic security.The cultivated land quality evaluation(CQE)is greatly significant for protecting and managing cultivated land.In this study,320 counties in the black soil region of Northeast China(BSRNC)represent the research units used to construct the CQE system measuring the soil properties(SP),cultivated land productivity(CLP),ecological environment(EE)and social economy(SE).The total of 19 factors were selected to calculate the integrated fertility index(IFI)and divided into grades.Simultaneously,we used the coupling coordination degree model to comprehensively analyze the spatial pattern of the cultivated land quality(CLQ)in the BSRNC,and use the structural equation model(SEM)to analyze the driving mechanism.The results show the following:1)The CLQ of 262 counties in the BSRNC is in a state of coupling and coordination,and the coupling and coordination degree presents a spatial distribution pattern of‘high in the southwest and northeast,low in the northwest and southeast’.The coordinated development degree of 271 counties is between 0.4 and 0.6,which is in a transitional state between coordination and disorder.2)The CLQ in the BSRNC is generally good,with an average grade of 3.High-quality cultivated land accounts for 58.45%of all counties,middle-and upper-quality cultivated land accounts for 27.05%,and poor-quality cultivated land accounts for 14.49%.3)The SEM analysis shows that the SP,CLP,EE,and SE all influence the CLQ.Among them,the SP has the largest driving force on the CLQ,while the SE has the smallest driving force on it.The results confirm that the main factors affecting the evaluation results are crop productivity level,normalized difference vegetation index,ratio vegetation index,difference vegetation index,and organic carbon content.When implementing protection measures in counties with a low CLQ,considering a balanced coordination of multiple systems and reasonably controlling the quality degradation are important.This study provides the current situation and driving factors of the CLQ in the BSRNC and will play an important role in black soil governance and utilization.
基金supported by the Open Research Fund of Innovation and Open Laboratory of Eco-meteorology in Northeast China,China Meteorological Administration(stqx2019zd02)Heilongjiang Meteorological Science and Technology Research Project(HQGG202004)Heilongjiang Provincial Natural Science Foundation of China(LH2020C105)。
文摘The dry and windy climate and low ground cover in spring in the black soil region of Northeast China make the soil strongly affected by wind erosion,which seriously threatens the food security and ecological security of this region.In this paper,based on the daily observation data of 124 meteorological stations in study area from 1961 to 2020,seasonal and monthly wind erosion climate factor(C)in spring(March to May)were calculated by using the method proposed by the Food and Agriculture Organization of the United Nations(FAO),the wind erosion characterization in spring were systematically analyzed based on C by various statistical analysis methods.The results showed that in the past 60 years,spring wind erosion climate factor(CSp)and monthly C of the whole region and each province(region)all showed highly significant decreasing trend,but they began to show rebounded trend in the middle or late 2000s.CSp of the study area showed a significant upward trend since 2008 with an increase of 4.59(10a)^(-1).The main contributors to this upward trend are the changes of C in March and in April.For the four provinces(regions),CSp in Heilongjiang,Jilin,Liaoning and eastern Inner Mongolia all showed rebounded since 2008,2011,2008 and 2009,respectively.The rebounded trend of CSp in eastern Inner Mongolia was the most obvious with a tendency rate of 11.27(10a)^(-1),and its mutation occurred after 1984.The rebound trend of CSp in Heilongjiang Province takes the second place,with a trend rate of 4.72(10a)^(-1),but there’s no obvious time mutation characteristics.The spatial characteristics of CSpand monthly C are similar,showing decreasing characteristics centered on the typical black soil belt of Northeast China.Compared with 1961-1990,in the period from 1991 to 2020,the proportion of high value areas(CSp>35,monthly C>10)has decreased to varying degrees,while the proportion of low value areas(CSp≤10,monthly C≤4)has increased.The trends of seasonal and monthly C in 82.2%~87.7%of the stations show significant decreases at 95%confidence level.CSp is closely related to wind speed at 2m height,temperature difference,minimum temperature and precipitation in the same period,of which the correlation between CSp and wind speed is the strongest,indicating that the main control factor for CSp in the study area is wind speed,but the impact of the change of temperature and precipitation on CSp cannot be ignored.
基金Supported by National Natural Science Foundation of China(40901136)~~
文摘In this paper,areas and main factors of wind erosion in black earth region of Northeast China were systematically analyzed,as well as the development trend of wind erosion in black earth region of Northeast China.In addition,development trend of wind erosion in black earth region of Northeast China was analyzed from the aspects of the geographic position,climatic change law in recent 40 years and effects of northeast sand land desertification on wind erosion in black earth region,which had provided references for the research and prevention of wind erosion in soil of black earth region of Northeast China.
基金Under the auspices of National Natural Science Foundation of China(No.41171335)Hydroinformatics for Ecohydrology Program of United Nations Educational+2 种基金Scientific and Cultural Organization(UNESCO)China Postdoctoral Science Foundation(No.20110490447)Beijing Postdoctoral Science Foundation(No.2012-49)
文摘The northeastern China is an important commodity grain region in China,as well as a notable corn belt and major soybean producing area.It thus plays a significant role in the national food security system.However,large-scale land reclamation and non-optimum farming practices give rise to soil degradation in the region.This study analyzed the food security issues coupled with global climate change in the northeastern China during 1980–2000,which is the period of modern agriculture.The results of statistical data show that the arable land area shrank markedly in 1992,and then increased slowly,while food production generally continually increased.The stable grain yield was due to the increase of applied fertilizer and irrigated areas.Soil degradation in the northeastern China includes severe soil erosion,reduced soil nutrients,a thinner black soil layer,and deterioration of soil physical properties.The sustainable development of the northeastern China is influenced by natural-artificial binary disturbance factors which consist of meteorological conditions,climate changes,and terrain factors as well as soil physical and chemical properties.Interactions between the increasing temperature and decreasing precipitation in the region led to reduced accumulation of soil organic matter,which results in poor soil fertility.Human-induced factors,such as large-scale land reclamation and non-optimum farming practices,unsuitable cultivation systems,dredging,road building,illegal land occupation,and extensive use of fertilizers and pesticides,have led to increasingly severe soil erosion and destruction.Solutions to several problems of soil degradation in this region requiring urgent settlement are proposed.A need for clear and systematic recognition and recording of land use changes,land degradation,food production and climate change conditions is suggested,which would provide a reference for food security studies in the northeastern China.
文摘The data of cultivated land quality monitoring sites,and the current situations and evolution trend of soil organic matter in cultivated land in Northeast China were analyzed.Then,the causes for low organic matter content were discussed.Finally,it came up with pertinent soil improvement recommendations,including actively promoting the quality protection technology model of cultivated land such as straw returning in accordance with local conditions,expanding organic fertilizer sources and increasing application of organic fertilizers,implementing reasonable crop rotation,planting green manure crops such as legumes,and realizing the combination of land use and land cultivation,establishing a reasonable fertilization system,combining organic and inorganic fertilizers with scientific fertilization,increasing fertilizer efficiency and reducing the application of chemical fertilizers,increasing financial investment and promoting the integration of funds related to cultivated land protection.
基金Foundation: National Natural Science Foundation of China, No.40671111 No.41101267 Nonprofit Sector Special Funds of the Ministry of Water Resources of China, No.2010332030
文摘Soil loss tolerance (/) is the maximum rate of annual soil erosion that is tolerated and still allows a high level of crop productivity to be sustained economically and indefinitely. In the black soil region of Northeast China, an empirically determined, default Tvalue of 200 (t/km2.a) is used for designing land restoration strategies for different types of soils. The ob- jective of this study was to provide a methodology to calculate a quantitative T for different black soil species. A field investigation was conducted to determine the typical soil profiles of 21 black soil species in the study area and a quantitative methodology based on a modified soil productivity index model was established to calculate the Tvalues. These values, which varied from 68 t/km2.a to 358 t/km2-a, yielded an average Tvalue of 141 t/km2.a for the 21 soil species. This is 29.5% lower than the current national standard T value. Two significant factors that influenced the T value were soil thickness and vulnerability to erosion. An acceptable reduction rate of soil productivity over a planned time period of 1% is recommended as necessary for maintaining long-term sustainable soil productivity. Compared with the cur- rently used of regional unified standard T value, the proposed method, which determines T using specific soil profile indices, has more practical implications for effective, sustainable management of soil and water conservation.
文摘[目的]直观把握东北黑土区沟蚀研究进展与热点,推进东北黑土区沟蚀研究领域的发展。[方法]以CNKI与Web of Siencec数据库中245篇相关文献为对象,利用文献计量的方法,使用CiteSacep软件绘制东北黑土区沟蚀研究知识图谱。[结果]结果表明:(1)黑土区沟蚀研究起步较晚,近十年发文量显著增加,但国际期刊发表成果较少,仅占26%。(2)该领域研究力量主要分布在我国东北,其中水利部松辽流域委员会、北京师范大学、中国科学院东北地理与农业生态研究所、东北农业大学、沈阳农业大学等机构贡献突出、影响较大;张树文是该领域中文发文量最多的学者,刘宝元和伍永秋是英文发文量最多的学者。(3)关键词共现表明,目前对东北黑土区沟蚀的关注重点主要集中在侵蚀沟发育特征、影响因素和沟蚀防治措施等方面。[结论]东北黑土区沟蚀尚未形成完整的研究框架和全面的认识,在未来的研究中,需进一步注重东北黑土区沟蚀形成和发育过程及机理研究,并深入分析地质、地形、水文、人类活动等因素的影响。