On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions ...On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions for parallel recovery. On the basis of adequate consideration of fuzziness of black-start zone partitioning, a new algorithm based on fuzzy clustering analysis is presented. Characteristic indexes are extracted fully and accurately. The raw data matrix is made up of the electrical distance between every nodes and blackstart resources. Closure transfer method is utilized to get the dynamic clustering. The availability and feasibility of the proposed algorithm are verified on the New-England 39 bus system at last.展开更多
Structural studies in the Dabie massif show that distribution of strain is extremely heterogeneous and illustrates the pattern of deformation partitioning in the ultra high pressure (UHP) metamorphic province on all ...Structural studies in the Dabie massif show that distribution of strain is extremely heterogeneous and illustrates the pattern of deformation partitioning in the ultra high pressure (UHP) metamorphic province on all scales. Based on the field structural analysis along with microstructural observation, at least five widespread episodes of ductile shear zone systems are identified by using geometric, kinematic and rheological indicators and they constitute a shear zone sequence in the UHP metamorphic province within the Dabie massif (DM), China. Each shear zone system, for example, the UHP eclogite facies shear zone system in the sequence, exhibits its own features including geometric styles, mineral assemblages, metamorphic pt conditions and deformation regimes during the formation of such shear zone system. Detailed macro and micro scopical features of different episodes of the shear zones are given with respect to mechanism of strain localization and deformation partitioning. The tectonic significance during the creation and exhumation of the UHP metamorphic rocks is evaluated briefly, as well. It is argued that the ductile shear zones in the UHP metamorphic province play an important role in the Dabie mountain building geodynamic process.展开更多
This work deals with the preliminary relationship between strain path and strain partitioning pattern in a sinistral transpressional zone, Lancangjiang shear zone, located to the southeast of Tibet. Various ductile ro...This work deals with the preliminary relationship between strain path and strain partitioning pattern in a sinistral transpressional zone, Lancangjiang shear zone, located to the southeast of Tibet. Various ductile rocks provide an opportunity to investig展开更多
The partitioning behavior of trace elements is of key importance for understanding the geochemical process and material cycle mechanism in subduction zones.This paper focuses on the advances and prospects on the studi...The partitioning behavior of trace elements is of key importance for understanding the geochemical process and material cycle mechanism in subduction zones.This paper focuses on the advances and prospects on the studies of trace element partitioning in subduction zones from the following four aspects.(1)The properties of fluids derived from subducting slabs and their ability in element transport.How slab-derived solute-rich fluids and supercritical fluids are formed and what the roles and key control factors of these fluids are in transferring of elements(especially the high field strength elements)from slab to wedge are discussed.We point out that the detailed investigations of supercritical fluids may provide a new perspective for the element migration mechanism,material cycle process,arc magma genesis and so on.(2)The behavior of transition elements during mantle wedge melting.The behavior of the first row transition elements(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn)in the mantle partial melting process is compatible or incompatible,depending on residual mineral assemblage and physicochemical conditions.The partitioning behavior of the elements such as Sc,Ti,Co,Ni and Zn whose valence states do not change in the melting process mainly depends on the residual mineral assemblage and temperature,whereas the partitioning behavior of the multivalent elements such as V and Fe is also the function of oxygen fugacity(fO_(2))in addition to mineral assemblage and temperature.Therefore,the partitioning behavior of transition elements has important applications in tracing lithologic inhomogeneity and fO_(2)of the mantle wedges.(3)The specificity of element partitioning behavior during arc magma evolution.Garnet has Dy/Yb partitioning behavior different from amphibole,and rutile has Nb/Ta partitioning behavior different from amphibole.Dy/Yb and Nb/Ta partitioning differences for these minerals enable to distinguish the specific evolution process of arc magmas.The Dy/Yb and Nb/Ta generally decrease with the increase of SiO_(2)in arc magmas,indicating that amphibole fractionation should be the most important during arc magma differentiation.(4)The behavior of sulfur and chalcophile elements and porphyry metallogeny.In subduction zones,the behavior of chalcophile elements such as Cu and Au is controlled by sulfide and fluid.Therefore,the stability of sulfide,the time at which the fluid exsolves from the melt relative to sulfide saturation,the fluid/sulfide mass ratio and fluid/melt Cu and Au partition coefficients in intermediate-felsic magma-H_(2)O systems are especially important in understanding Cu and Au enrichment in magma-hydrothermal processes.Intermediate-felsic magmas mainly originate from the differentiation of arc magmas at lower crustal reservoirs,and thus the fluid exsolution from the lower crustal reservoirs and the fluid/melt and fluid/sulfide partition coefficients of Cu and Au should be the keys to understanding quantitatively how Cu and Au are migrated from the deep crust to the shallow site of mineralization.展开更多
文摘On the process of power system black start after an accident, it can help to optimize the resources allocation and accelerate the recovery process that decomposing the power system into several independent partitions for parallel recovery. On the basis of adequate consideration of fuzziness of black-start zone partitioning, a new algorithm based on fuzzy clustering analysis is presented. Characteristic indexes are extracted fully and accurately. The raw data matrix is made up of the electrical distance between every nodes and blackstart resources. Closure transfer method is utilized to get the dynamic clustering. The availability and feasibility of the proposed algorithm are verified on the New-England 39 bus system at last.
文摘Structural studies in the Dabie massif show that distribution of strain is extremely heterogeneous and illustrates the pattern of deformation partitioning in the ultra high pressure (UHP) metamorphic province on all scales. Based on the field structural analysis along with microstructural observation, at least five widespread episodes of ductile shear zone systems are identified by using geometric, kinematic and rheological indicators and they constitute a shear zone sequence in the UHP metamorphic province within the Dabie massif (DM), China. Each shear zone system, for example, the UHP eclogite facies shear zone system in the sequence, exhibits its own features including geometric styles, mineral assemblages, metamorphic pt conditions and deformation regimes during the formation of such shear zone system. Detailed macro and micro scopical features of different episodes of the shear zones are given with respect to mechanism of strain localization and deformation partitioning. The tectonic significance during the creation and exhumation of the UHP metamorphic rocks is evaluated briefly, as well. It is argued that the ductile shear zones in the UHP metamorphic province play an important role in the Dabie mountain building geodynamic process.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40802050, 49802020, 40172074)China Postdoctoral Science Foundation (Grant No. 20070440065)
文摘This work deals with the preliminary relationship between strain path and strain partitioning pattern in a sinistral transpressional zone, Lancangjiang shear zone, located to the southeast of Tibet. Various ductile rocks provide an opportunity to investig
基金the National Key Research and Development Program of China(Grant No.2018YFA0702704)the National Natural Science Foundation of China(Grant Nos.41573053&41921003)the Key Research Project of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC012).
文摘The partitioning behavior of trace elements is of key importance for understanding the geochemical process and material cycle mechanism in subduction zones.This paper focuses on the advances and prospects on the studies of trace element partitioning in subduction zones from the following four aspects.(1)The properties of fluids derived from subducting slabs and their ability in element transport.How slab-derived solute-rich fluids and supercritical fluids are formed and what the roles and key control factors of these fluids are in transferring of elements(especially the high field strength elements)from slab to wedge are discussed.We point out that the detailed investigations of supercritical fluids may provide a new perspective for the element migration mechanism,material cycle process,arc magma genesis and so on.(2)The behavior of transition elements during mantle wedge melting.The behavior of the first row transition elements(Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,Zn)in the mantle partial melting process is compatible or incompatible,depending on residual mineral assemblage and physicochemical conditions.The partitioning behavior of the elements such as Sc,Ti,Co,Ni and Zn whose valence states do not change in the melting process mainly depends on the residual mineral assemblage and temperature,whereas the partitioning behavior of the multivalent elements such as V and Fe is also the function of oxygen fugacity(fO_(2))in addition to mineral assemblage and temperature.Therefore,the partitioning behavior of transition elements has important applications in tracing lithologic inhomogeneity and fO_(2)of the mantle wedges.(3)The specificity of element partitioning behavior during arc magma evolution.Garnet has Dy/Yb partitioning behavior different from amphibole,and rutile has Nb/Ta partitioning behavior different from amphibole.Dy/Yb and Nb/Ta partitioning differences for these minerals enable to distinguish the specific evolution process of arc magmas.The Dy/Yb and Nb/Ta generally decrease with the increase of SiO_(2)in arc magmas,indicating that amphibole fractionation should be the most important during arc magma differentiation.(4)The behavior of sulfur and chalcophile elements and porphyry metallogeny.In subduction zones,the behavior of chalcophile elements such as Cu and Au is controlled by sulfide and fluid.Therefore,the stability of sulfide,the time at which the fluid exsolves from the melt relative to sulfide saturation,the fluid/sulfide mass ratio and fluid/melt Cu and Au partition coefficients in intermediate-felsic magma-H_(2)O systems are especially important in understanding Cu and Au enrichment in magma-hydrothermal processes.Intermediate-felsic magmas mainly originate from the differentiation of arc magmas at lower crustal reservoirs,and thus the fluid exsolution from the lower crustal reservoirs and the fluid/melt and fluid/sulfide partition coefficients of Cu and Au should be the keys to understanding quantitatively how Cu and Au are migrated from the deep crust to the shallow site of mineralization.