Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been dev...Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.展开更多
In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central t...In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.展开更多
An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a ne...An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.展开更多
Based on the target analysis of the operation optimization for power plants, a novel system scheme called operation optimization decision support system (OODSS) is brought forward. According to the structure and desig...Based on the target analysis of the operation optimization for power plants, a novel system scheme called operation optimization decision support system (OODSS) is brought forward. According to the structure and design thinking of decision support system (DSS), the overall structure of the OODSS is studied, and the scheme of the sub systems in the OODSS such as the user interface system, the problem processing system, the database system, the model base system, the expert system (ES) and the data mining sy...展开更多
Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental imp...Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental impact of a micro-energy network system in an industrial park through a life cycle assessment using the operation of the micro-energy network over a year as the functional unit and“cradle-to-gate”as the system boundary.Based on the baseline scenario,a natural gas generator set was added to replace central heating,and the light pipes were expanded to constitute the optimized scenario.The results showed that the key impact categories for both scenarios were global warming,fine particulate matter formation,human carcinogenic toxicity,and human non-carcinogenic toxicity.The overall environmental impact of the optimized scenario was reduced by 68%compared to the baseline scenario.A sensitivity analysis of the key factors showed that electricity from the power grid was the key impact factor in both scenarios,followed by central heating and natural gas.Therefore,to reduce the environmental impact of network systems,it is necessary to further optimize the grid power structure.The research approach can be used to optimize micro-energy networks and evaluate the environmental impact of different energy systems.展开更多
1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to...1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].展开更多
The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on...The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.展开更多
Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load i...Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.展开更多
Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the e...Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.展开更多
This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of do...This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years.In this study,water supply and environmental flow supply were 40%and 30%in the droughts,respectively.Moreover,mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s,respectively.Hence,these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years,which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts.Moreover,available storage in reservoir will be remarkably reduced(averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3),which implies strategic storage of reservoir might be threatened.Among used evolutionary algorithms,particle swarm optimization(PSO)was selected as the best algorithm for solving the novel proposed objective function.The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis.This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas.The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem.In other words,the results highlighted that replanning of water resources in the study area is necessary.Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.展开更多
Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fus...Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fusion aims to improve the image quality and preserve the specific features.The methods of medical image fusion generally use knowledge in many differentfields such as clinical medicine,computer vision,digital imaging,machine learning,pattern recognition to fuse different medical images.There are two main approaches in fusing image,including spatial domain approach and transform domain approachs.This paper proposes a new algorithm to fusion multimodal images.This algorithm is based on Entropy optimization and the Sobel operator.Wavelet transform is used to split the input images into components over the low and high frequency domains.Then,two fusion rules are used for obtaining the fusing images.Thefirst rule,based on the Sobel operator,is used for high frequency components.The second rule,based on Entropy optimization by using Particle Swarm Optimization(PSO)algorithm,is used for low frequency components.Proposed algorithm is implemented on the images related to central nervous system diseases.The experimental results of the paper show that the proposed algorithm is better than some recent methods in term of brightness level,the contrast,the entropy,the gradient and visual informationfidelity for fusion(VIFF),Feature Mutual Information(FMI)indices.展开更多
To improve the inference efficiency of convolutional neural networks(CNN),the existing neural networks mainly adopt heuristic and dynamic programming algorithms to realize parallel scheduling among operators.Heuristic...To improve the inference efficiency of convolutional neural networks(CNN),the existing neural networks mainly adopt heuristic and dynamic programming algorithms to realize parallel scheduling among operators.Heuristic scheduling algorithms can generate local optima easily,while the dynamic programming algorithm has a long convergence time for complex structural models.This paper mainly studies the parallel scheduling between operators and proposes an inter-operator parallelism schedule(IOPS)scheduling algorithm that guarantees the minimum similar execution delay.Firstly,a graph partitioning algorithm based on the largest block is designed to split the neural network model into multiple subgraphs.Then,the operators that meet the conditions is replaced according to the defined operator replacement rules.Finally,the optimal scheduling method based on backtracking is used to schedule the computational graph.Network models such as Inception-v3,ResNet-50,and RandWire are selected for testing.The experimental results show that the algorithm designed in this paper can achieve a 1.6×speedup compared with the existing sequential execution methods.展开更多
The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the oper...The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the operation optimization of this technique depends mainly on experience due to absence of applicable evaluation and design models for removing plugging materials.This paper presents an experimental setup to simulate the cleanup process of plugged screens by rotary water jetting on the surface and to evaluate the performance of a jetting tool.Using real plugged screens pulled from damaged wells,a series of tests were performed,and the qualitative relationships between the cleanup efficiency and various operational parameters,such as the type of fluids used,flow rate,mode of tool movement,etc.,were obtained.The test results indicated that the cleanup performance was much better when the rotary jetting tool moved and stopped periodically for a certain time than that when it reciprocated at a constant speed.To be exact,it was desirable for the rotary jetting tool to move for 1.5-2 m and stop for 2-4 min,which was called the "move-stop-move" mode.Good cleanup performance could be obtained at high flow rates,and the flow rate was recommended to be no lower than 550-600 L/min.The test results also indicated that complex mud acid was better than clean water in terms of cleanup performance.Good cleanup efficiency and high screen permeability recovery could be achieved for severely plugged screens.Rotary jetting is preferred for the cleanup of horizontal wells with severely plugged screens,and the screen permeability recovery ratio may reach 20% if optimized operation parameters were used.展开更多
Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operat...Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.展开更多
Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel ma...Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel manufacturing process is essential to reduce the production cost, increase the production or energy efficiency, and improve production management. In this study, the operation optimization problem of the steel manufacturing process, which needed to go through a complex production organization from customers' orders to workshop production, was analyzed. The existing research on the operation optimization techniques, including process simulation, production planning, production scheduling, interface scheduling, and scheduling of auxiliary equipment, was reviewed. The literature review reveals that, although considerable research has been conducted to optimize the operation of steel production, these techniques are usually independent and unsystematic.Therefore, the future work related to operation optimization of the steel manufacturing process based on the integration of multi technologies and the intersection of multi disciplines were summarized.展开更多
Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algori...Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.展开更多
The renewable portfolio standard has been promoted in parallel with the reform of the electricity market,and the flexibility requirement of the power system has rapidly increased.To promote renewable energy consumptio...The renewable portfolio standard has been promoted in parallel with the reform of the electricity market,and the flexibility requirement of the power system has rapidly increased.To promote renewable energy consumption and improve power system flexibility,a bi-level optimal operation model of the electricity market is proposed.A probabilistic model of the flexibility requirement is established,considering the correlation between wind power,photovoltaic power,and load.A bi-level optimization model is established for the multi-markets;the upper and lower models represent the intra-provincial market and inter-provincial market models,respectively.To efficiently solve the model,it is transformed into a mixed-integer linear programming model using the Karush–Kuhn–Tucker condition and Lagrangian duality theory.The economy and flexibility of the model are verified using a provincial power grid as an example.展开更多
A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality co...A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.展开更多
In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimizati...In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.展开更多
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金the National Natural Science Foundation of China(62076225,62073300)the Natural Science Foundation for Distinguished Young Scholars of Hubei(2019CFA081)。
文摘Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable attention.Various constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with the use of different algorithmic strategies,evolutionary operators,and constraint-handling techniques.The performance of CMOEAs may be heavily dependent on the operators used,however,it is usually difficult to select suitable operators for the problem at hand.Hence,improving operator selection is promising and necessary for CMOEAs.This work proposes an online operator selection framework assisted by Deep Reinforcement Learning.The dynamics of the population,including convergence,diversity,and feasibility,are regarded as the state;the candidate operators are considered as actions;and the improvement of the population state is treated as the reward.By using a Q-network to learn a policy to estimate the Q-values of all actions,the proposed approach can adaptively select an operator that maximizes the improvement of the population according to the current state and thereby improve the algorithmic performance.The framework is embedded into four popular CMOEAs and assessed on 42 benchmark problems.The experimental results reveal that the proposed Deep Reinforcement Learning-assisted operator selection significantly improves the performance of these CMOEAs and the resulting algorithm obtains better versatility compared to nine state-of-the-art CMOEAs.
基金support from the National Science and Technology Council of Taiwan(Contract Nos.112-2221-E-011-115 and 111-2622-E-011019)the support from Intelligent Manufacturing Innovation Center(IMIC),National Taiwan University of Science and Technology(NTUST),Taipei 10607,Taiwan,which is a Featured Areas Research Center in Higher Education Sprout Project of Ministry of Education(MOE),Taiwan(since 2023)was appreciated.
文摘In this study,we introduce a novel multi-objective optimization model tailored for modern manufacturing,aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance.Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel,addressing a crucial gap in the integration of maintenance personnel dispatching and station selection.Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness.The core of our methodology is the NSGA Ⅲ+Dispatch,an advanced adaptation of the Non-Dominated Sorting Genetic Algorithm Ⅲ(NSGA-Ⅲ),meticulously designed for the selection of maintenance stations and effective operator dispatching.This method integrates a comprehensive coding process,crossover operator,and mutation operator to efficiently manage multiple objectives.Rigorous empirical testing,including a detailed analysis from a taiwan region electronic equipment manufacturer,validated the effectiveness of our approach across various scenarios of machine failure frequencies and operator configurations.The findings reveal that the proposed model significantly outperforms current practices by reducing response times by up to 23%in low-frequency and 28.23%in high-frequency machine failure scenarios,leading to notable improvements in efficiency and cost reduction.Additionally,it demonstrates significant improvements in oper-ational efficiency,particularly in selective high-frequency failure contexts,while ensuring substantial manpower cost savings without compromising on operational effectiveness.This research significantly advances maintenance strategies in production environments,providing the manufacturing industry with practical,optimized solutions for diverse machine malfunction situations.Furthermore,the methodologies and principles developed in this study have potential applications in various other sectors,including healthcare,transportation,and energy,where maintenance efficiency and resource optimization are equally critical.
文摘An algorithm named InterOpt for optimizing operational parameters is proposed based on interpretable machine learning,and is demonstrated via optimization of shale gas development.InterOpt consists of three parts:a neural network is used to construct an emulator of the actual drilling and hydraulic fracturing process in the vector space(i.e.,virtual environment);:the Sharpley value method in inter-pretable machine learning is applied to analyzing the impact of geological and operational parameters in each well(i.e.,single well feature impact analysis):and ensemble randomized maximum likelihood(EnRML)is conducted to optimize the operational parameters to comprehensively improve the efficiency of shale gas development and reduce the average cost.In the experiment,InterOpt provides different drilling and fracturing plans for each well according to its specific geological conditions,and finally achieves an average cost reduction of 9.7%for a case study with 104 wells.
文摘Based on the target analysis of the operation optimization for power plants, a novel system scheme called operation optimization decision support system (OODSS) is brought forward. According to the structure and design thinking of decision support system (DSS), the overall structure of the OODSS is studied, and the scheme of the sub systems in the OODSS such as the user interface system, the problem processing system, the database system, the model base system, the expert system (ES) and the data mining sy...
基金funded by the National Key R&D Project[Grant No.2019YFC1903900]Key R&D Province[Grant No.2023SFGC0101]Taishan Scholar Project[Grant No.tsqn202103010].
文摘Micro-energy systems contribute significantly to environmental improvement by reducing dependence on power grids through the utilization of multiple renewable energy sources.This study quantified the environmental impact of a micro-energy network system in an industrial park through a life cycle assessment using the operation of the micro-energy network over a year as the functional unit and“cradle-to-gate”as the system boundary.Based on the baseline scenario,a natural gas generator set was added to replace central heating,and the light pipes were expanded to constitute the optimized scenario.The results showed that the key impact categories for both scenarios were global warming,fine particulate matter formation,human carcinogenic toxicity,and human non-carcinogenic toxicity.The overall environmental impact of the optimized scenario was reduced by 68%compared to the baseline scenario.A sensitivity analysis of the key factors showed that electricity from the power grid was the key impact factor in both scenarios,followed by central heating and natural gas.Therefore,to reduce the environmental impact of network systems,it is necessary to further optimize the grid power structure.The research approach can be used to optimize micro-energy networks and evaluate the environmental impact of different energy systems.
文摘1 Introduction.With the continuous growth of the global population,the energy demand continues to increase.However,due to the dominance of fossil fuels in global energy and fossil fuels are non-renewable,it has led to the global energy crisis[1].Besides,the use of fossil fuels will generate a mass of air pollutants(e.g.,carbon dioxide,sulfur dioxide,etc.),which will cause serious environmental pollution,climate change[2],etc.To resolve the aforementioned issues,countries around the world have implemented a variety of measures hoping to fundamentally adjust the global energy structure and achieve sustainable development.Thereinto,“Paris Agreement”reached in 2015 under the framework of“United Nations Framework Convention on Climate Change”aims to control the increase in the average temperature of the globe to within 2°C below preindustrial levels,and thereafter to peak global greenhouse gas emissions as soon as possible,continuously decreasing thereafter[3].United Kingdom plans to reduce the average exhaust emissions of“new cars”to approximately 50–70 g/km by 20230,which is roughly half of what it is now[4].In addition,China proposed a plan at“United Nations General Assembly”in 2020 to peak carbon dioxide emissions by 2030 and strive to achieve carbon neutrality by 2060.It is a fact that the whole world is committed to changing the current energy structure,protecting the Earth’s ecology,and achieving global sustainable development[5].
基金supported by the National Natural Science Foundation of China(62176218,62176027)the Fundamental Research Funds for the Central Universities(XDJK2020TY003)the Funds for Chongqing Talent Plan(cstc2024ycjh-bgzxm0082)。
文摘The Nesterov accelerated dynamical approach serves as an essential tool for addressing convex optimization problems with accelerated convergence rates.Most previous studies in this field have primarily concentrated on unconstrained smooth con-vex optimization problems.In this paper,on the basis of primal-dual dynamical approach,Nesterov accelerated dynamical approach,projection operator and directional gradient,we present two accelerated primal-dual projection neurodynamic approaches with time scaling to address convex optimization problems with smooth and nonsmooth objective functions subject to linear and set constraints,which consist of a second-order ODE(ordinary differential equation)or differential conclusion system for the primal variables and a first-order ODE for the dual vari-ables.By satisfying specific conditions for time scaling,we demonstrate that the proposed approaches have a faster conver-gence rate.This only requires assuming convexity of the objective function.We validate the effectiveness of our proposed two accel-erated primal-dual projection neurodynamic approaches through numerical experiments.
基金The National Natural Science Foundation of China(No.51176031)
文摘Based on tests and theoretical calculation an optimum steam admission mode is proposed which can effectively solve the steam-excited vibration.An operation mode jointly considering the valve point and operation load is proposed based on the analysis and study of a large number of unit operation optimization methods.According to the steam-excited vibration that occurs during the optimization process when the nozzle governing steam turbine switches from a single valve to multi-valves a steam admission optimization program is proposed.This comprehensive program considering the steam-excited vibration is applied to a 600 MW steam turbine unit to obtain the optimum sliding pressure curve and the optimum operation mode and the steam-excited vibration is solved successfully.
文摘Objective: This paper aims to explore the impact of optimizing details in the operating room on the level of knowledge, attitude, and practice of hospital infection prevention and control by surgeons, as well as the effectiveness of infection control. Methods: From January 2022 to June 2023, a total of 120 patients were screened and randomly divided into a control group (routine care and hospital infection management) and a study group (optimizing details in the operating room). Results: Significant differences were found between the two groups in the data of surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, infection rates, and nursing satisfaction, with the study group showing better results (P Conclusion: The use of optimizing details in the operating room among surgeons can effectively improve surgeons’ level of knowledge, attitude, and practice in hospital infection prevention and control, reduce infection occurrence, and is worth promoting.
文摘This study proposes a novel form of environmental reservoir operation through integrating environmental flow supply,drought analysis,and evolutionary optimization.This study demonstrates that simultaneous supply of downstream environmental flow of reservoir as well as water demand is challenging in the semi-arid area especially in dry years.In this study,water supply and environmental flow supply were 40%and 30%in the droughts,respectively.Moreover,mean errors of supplying water demand as well as environmental flow in dry years were 6 and 9 m3/s,respectively.Hence,these results highlight that ecological stresses of the downstream aquatic habitats as well as water supply loss are considerably escalated in dry years,which implies even using environmental optimal operation is not able to protect downstream aquatic habitats properly in the severe droughts.Moreover,available storage in reservoir will be remarkably reduced(averagely more than 30×106 m3 compared with optimal storage equal to 70×106 m3),which implies strategic storage of reservoir might be threatened.Among used evolutionary algorithms,particle swarm optimization(PSO)was selected as the best algorithm for solving the novel proposed objective function.The significance of this study is to propose a novel objective function to optimize reservoir operation in which environmental flow supply is directly addressed and integrated with drought analysis.This novel form of optimization system can overcome uncertainties of the conventional objective function due to considering environmental flow in the objective function as well as drought analysis in the context of reservoir operation especially applicable in semi-arid areas.The results indicate that using either other water resources for water supply or reducing water demand is the only solution for managing downstream ecological impacts of the river ecosystem.In other words,the results highlighted that replanning of water resources in the study area is necessary.Replacing the conventional optimization system for reservoir operation in the semi-arid area with proposed optimization system is recommendable to minimize the negotiations between stakeholders and environmental managers.
文摘Fusing medical images is a topic of interest in processing medical images.This is achieved to through fusing information from multimodality images for the purpose of increasing the clinical diagnosis accuracy.This fusion aims to improve the image quality and preserve the specific features.The methods of medical image fusion generally use knowledge in many differentfields such as clinical medicine,computer vision,digital imaging,machine learning,pattern recognition to fuse different medical images.There are two main approaches in fusing image,including spatial domain approach and transform domain approachs.This paper proposes a new algorithm to fusion multimodal images.This algorithm is based on Entropy optimization and the Sobel operator.Wavelet transform is used to split the input images into components over the low and high frequency domains.Then,two fusion rules are used for obtaining the fusing images.Thefirst rule,based on the Sobel operator,is used for high frequency components.The second rule,based on Entropy optimization by using Particle Swarm Optimization(PSO)algorithm,is used for low frequency components.Proposed algorithm is implemented on the images related to central nervous system diseases.The experimental results of the paper show that the proposed algorithm is better than some recent methods in term of brightness level,the contrast,the entropy,the gradient and visual informationfidelity for fusion(VIFF),Feature Mutual Information(FMI)indices.
基金Supported by the National Key Research and Development Project of China(No.2020AAA0104603)the National Natural Science Foundation of China(No.61834005,61772417)the Shaanxi Province Key R&D Plan(No.2021GY-029).
文摘To improve the inference efficiency of convolutional neural networks(CNN),the existing neural networks mainly adopt heuristic and dynamic programming algorithms to realize parallel scheduling among operators.Heuristic scheduling algorithms can generate local optima easily,while the dynamic programming algorithm has a long convergence time for complex structural models.This paper mainly studies the parallel scheduling between operators and proposes an inter-operator parallelism schedule(IOPS)scheduling algorithm that guarantees the minimum similar execution delay.Firstly,a graph partitioning algorithm based on the largest block is designed to split the neural network model into multiple subgraphs.Then,the operators that meet the conditions is replaced according to the defined operator replacement rules.Finally,the optimal scheduling method based on backtracking is used to schedule the computational graph.Network models such as Inception-v3,ResNet-50,and RandWire are selected for testing.The experimental results show that the algorithm designed in this paper can achieve a 1.6×speedup compared with the existing sequential execution methods.
文摘The rotary water jetting is one of the most important techniques for horizontal well cleanup.The jet flow is used to remove plugging particles from sand control screens to recover their permeability.Currently,the operation optimization of this technique depends mainly on experience due to absence of applicable evaluation and design models for removing plugging materials.This paper presents an experimental setup to simulate the cleanup process of plugged screens by rotary water jetting on the surface and to evaluate the performance of a jetting tool.Using real plugged screens pulled from damaged wells,a series of tests were performed,and the qualitative relationships between the cleanup efficiency and various operational parameters,such as the type of fluids used,flow rate,mode of tool movement,etc.,were obtained.The test results indicated that the cleanup performance was much better when the rotary jetting tool moved and stopped periodically for a certain time than that when it reciprocated at a constant speed.To be exact,it was desirable for the rotary jetting tool to move for 1.5-2 m and stop for 2-4 min,which was called the "move-stop-move" mode.Good cleanup performance could be obtained at high flow rates,and the flow rate was recommended to be no lower than 550-600 L/min.The test results also indicated that complex mud acid was better than clean water in terms of cleanup performance.Good cleanup efficiency and high screen permeability recovery could be achieved for severely plugged screens.Rotary jetting is preferred for the cleanup of horizontal wells with severely plugged screens,and the screen permeability recovery ratio may reach 20% if optimized operation parameters were used.
基金Supported by the National Natural Science Foundation of China(21006127)the National Basic Research Program of China(2012CB720500)the Science Foundation of China University of Petroleum(KYJJ2012-05-28)
文摘Operation optimization is an effective method to explore potential economic benefits for existing plants. The m.aximum potential benefit from operationoptimization is determined by the distances between current operating point and process constraints, which is related to the margins of design variables. Because of various ciisturbances in chemical processes, some distances must be reserved for fluctuations of process variables and the optimum operating point is not on some process constraints. Thus the benefit of steady-state optimization can not be fully achied(ed while that of dynamic optimization can be really achieved. In this study, the steady-state optimizationand dynamic optimization are used, and the potential benefit-is divided into achievable benefit for profit and unachievable benefit for control. The fluid catalytic cracking unit (FCCU) is used for case study. With the analysis on how the margins of design variables influence the economic benefit and control performance, the bottlenecks of process design are found and appropriate control structure can be selected.
基金financially supported by the National Natural Science Foundation of China (No.51734004)the National Key Research and Development Program of China (No.2017YFB0304005)the National Natural Science Foundation of China (No.51474044)。
文摘Against the realistic background of excess production capacity, product structure imbalance, and high material and energy consumption in steel enterprises, the implementation of operation optimization for the steel manufacturing process is essential to reduce the production cost, increase the production or energy efficiency, and improve production management. In this study, the operation optimization problem of the steel manufacturing process, which needed to go through a complex production organization from customers' orders to workshop production, was analyzed. The existing research on the operation optimization techniques, including process simulation, production planning, production scheduling, interface scheduling, and scheduling of auxiliary equipment, was reviewed. The literature review reveals that, although considerable research has been conducted to optimize the operation of steel production, these techniques are usually independent and unsystematic.Therefore, the future work related to operation optimization of the steel manufacturing process based on the integration of multi technologies and the intersection of multi disciplines were summarized.
基金supported by the Foundation of the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province(Grant No.181RTSTHN009)the Foundation of the Key Laboratory of Water Environment Simulation and Treatment in Henan Province(Grant No.2017016).
文摘Based on conventional particle swarm optimization(PSO),this paper presents an efficient and reliable heuristic approach using PSO with an adaptive random inertia weight(ARIW)strategy,referred to as the ARIW-PSO algorithm,to build a multi-objective optimization model for reservoir operation.Using the triangular probability density function,the inertia weight is randomly generated,and the probability density function is automatically adjusted to make the inertia weight generally greater in the initial stage of evolution,which is suitable for global searches.In the evolution process,the inertia weight gradually decreases,which is beneficial to local searches.The performance of the ARIWPSO algorithm was investigated with some classical test functions,and the results were compared with those of the genetic algorithm(GA),the conventional PSO,and other improved PSO methods.Then,the ARIW-PSO algorithm was applied to multi-objective optimal dispatch of the Panjiakou Reservoir and multi-objective flood control operation of a reservoir group on the Luanhe River in China,including the Panjiakou Reservoir,Daheiting Reservoir,and Taolinkou Reservoir.The validity of the multi-objective optimization model for multi-reservoir systems based on the ARIW-PSO algorithm was verified.
基金supported by the National Key R&D Program of China(2018YFA0702200)Science and Technology Project of State Grid Shandong Electric Power Corporation(52062518000Q)。
文摘The renewable portfolio standard has been promoted in parallel with the reform of the electricity market,and the flexibility requirement of the power system has rapidly increased.To promote renewable energy consumption and improve power system flexibility,a bi-level optimal operation model of the electricity market is proposed.A probabilistic model of the flexibility requirement is established,considering the correlation between wind power,photovoltaic power,and load.A bi-level optimization model is established for the multi-markets;the upper and lower models represent the intra-provincial market and inter-provincial market models,respectively.To efficiently solve the model,it is transformed into a mixed-integer linear programming model using the Karush–Kuhn–Tucker condition and Lagrangian duality theory.The economy and flexibility of the model are verified using a provincial power grid as an example.
基金Supported by the National Natural Science Foundation of China(20676117) the National Creative Research Groups Science Foundation of China(60421002)
文摘A comparison of arithmetic operations of two dynamic process optimization approaches called quasi-sequential approach and reduced Sequential Quadratic Programming(rSQP)simultaneous approach with respect to equality constrained optimization problems is presented.Through the detail comparison of arithmetic operations,it is concluded that the average iteration number within differential algebraic equations(DAEs)integration of quasi-sequential approach could be regarded as a criterion.One formula is given to calculate the threshold value of average iteration number.If the average iteration number is less than the threshold value,quasi-sequential approach takes advantage of rSQP simultaneous approach which is more suitable contrarily.Two optimal control problems are given to demonstrate the usage of threshold value.For optimal control problems whose objective is to stay near desired operating point,the iteration number is usually small.Therefore,quasi-sequential approach seems more suitable for such problems.
基金supported by the National Natural Science Foundation of China (Grant No. 50679011)
文摘In this paper, a hybrid improved particle swarm optimization (IPSO) algorithm is proposed for the optimization of hydroelectric power scheduling in multi-reservoir systems. The conventional particle swarm optimization (PSO) algorithm is improved in two ways: (1) The linearly decreasing inertia weight coefficient (LDIWC) is replaced by a self-adaptive exponential inertia weight coefficient (SEIWC), which could make the PSO algorithm more balanceable and more effective in both global and local searches. (2) The crossover and mutation idea inspired by the genetic algorithm (GA) is imported into the particle updating method to enhance the diversity of populations. The potential ability of IPSO in nonlinear numerical function optimization was first tested with three classical benchmark functions. Then, a long-term multi-reservoir system operation model based on IPSO was designed and a case study was carried out in the Minjiang Basin in China, where there is a power system consisting of 26 hydroelectric power plants. The scheduling results of the IPSO algorithm were found to outperform PSO and to be comparable with the results of the dynamic programming successive approximation (DPSA) algorithm.