The study of multipoint blank holder force(BHF) control is carried out for hydroforming a complicated shape motorcycle fuel tank. By finite element method (FEM) simulation, the configuration of multipoint blank ho...The study of multipoint blank holder force(BHF) control is carried out for hydroforming a complicated shape motorcycle fuel tank. By finite element method (FEM) simulation, the configuration of multipoint blank holder cylinders and the setting of local BHF are optimized, and the influences of the multipoint BHF on the hydromechanical deep drawing and conventional hydroforming processes are studied. The desired fluid pressure and whole BHF are predicted for hydromechanical deep drawing process. Finally, simulation results are testified by forming experiment, and they are in agreement very well.展开更多
Blank holder force (BHF) is an important measure to control the sheet metal forming. BHF is identified quickly using artificial neural network (ANN) on the basis of its analytical description. And critical rupture and...Blank holder force (BHF) is an important measure to control the sheet metal forming. BHF is identified quickly using artificial neural network (ANN) on the basis of its analytical description. And critical rupture and wrinkle BHF curves are given. A close-loop control system is established to finish the forming process.展开更多
At first, a series of finite element method (FEM) simulation tests were used to find the critical forming conditions of hot-galvanized sheet steel during the rectangular box drawing processing when constant blank ho...At first, a series of finite element method (FEM) simulation tests were used to find the critical forming conditions of hot-galvanized sheet steel during the rectangular box drawing processing when constant blank holder forces were applied. According the test results, the reasonable alteration scope of initial variable blank holder force (VBHF) was as 1.9-2.3 T. Then, based on the test productions of blank holder force, 12 typical VBHF curves were applied to perform the simulation tests by the simulation software of DYNAFORM. The simulation test results showed that VBHF had great effects on drawing formability of hot-galvanized sheet steel during the rectangular box drawing. However, the different VBHF curves were applied to control the whole drawing and it would get great different effects. At the same tine, the VBHF had great effects on the maximum thick thinning ratio, but had little effect on the maximum thick incrassation ratio. So, reasonable application of the VBHF would greatly decrease the fractures. When the VBHF profile is taken as curve L, the best effect of drawing formability could be obtained. When curve I is used, contrary effect could be gotten. The other types of curves would cause effects between above two types of VBHF curves. Finally, the actual tests were applied to check the validity of the FEM simulation tests. The results show that the FEM simulation tests are good ways for predicting and optimizing the VBHF.展开更多
Constituting the reasonable control models of the wrinkle limit blank holder forces is the sticking point of the processes of the deep drawing with variable blank-holder forces, especially in the square-box forming. T...Constituting the reasonable control models of the wrinkle limit blank holder forces is the sticking point of the processes of the deep drawing with variable blank-holder forces, especially in the square-box forming. To begin with, a mode of segmenting flange of the square-box into eight zones is put forward according to the fact that the uniformity of flange deforming can be improved by control-ling segment blank-holders. Considering the integral influence of shear stress, a new concept, strain relaxation factor is defined. Hereby, the law of distribution of stress and stain in the deforming flange of square-box is achieved. Then based on these mechanical analysis models and the energy principle, the wrinkling flexivity functions of the straight flange and the circle flange are given, and the corresponding formulae of wrinkling limit blank-holder force in these two situations are also educed. In these processes, ply-anisotropy, strain hardening, thickness and friction are considered. In the end, a calculating example is designed to validate the rationality of the formulae of wrinkling limit blank-holder force, at the same time, the influences of the ply-anisotropy exponent and the strain hardening exponent on the wrinkle limit blank holder forces are also analyzed.展开更多
Wrinkling and fracture are main defects in sheet metal forming of aluminum alloy sheet,which can be reduced or even eliminated by manipulating a suitable blank -holder forces (BHF). But,it is difficult to attain the o...Wrinkling and fracture are main defects in sheet metal forming of aluminum alloy sheet,which can be reduced or even eliminated by manipulating a suitable blank -holder forces (BHF). But,it is difficult to attain the optimum BHF during she et metal forming. A new optimization algorithm integrating the finite element me thod (FEM) and adaptive response surface method is presented to determinate the optimal BHFs in deep drawing of aluminum rectangular box. To assure convergence,the trust region modes management strategies are used to adjust the move limit of design spaces. Finally,the optimum results of rectangular box deep drawing a re given. Verification experiments are performed to verify the optimal result.展开更多
Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage me...Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage mechanism has been designed and manufactured. Whole control system of the new BHF technique was developed, and the basic structure of the hardware configuration of the system was given. Software analysis, implementation and division of the functional modules have been done. Also, the control software in data acquisition and processing module has been developed in the relevant technology of the BHF control system for the requirements of real-time, stability and accuracy. By the new BHF device combined with the hardware and the software system, the BHF can be regulated accurately variation with the predefined BHF profile in deep drawing process.展开更多
Blank holder force(BHF)is a crucial parameter in deep drawing,having close relation with the forming quality of sheet metal.However,there are different BHFs maintaining the best forming effect in different stages of d...Blank holder force(BHF)is a crucial parameter in deep drawing,having close relation with the forming quality of sheet metal.However,there are different BHFs maintaining the best forming effect in different stages of deep drawing.The variable blank holder force(VBHF)varying with the drawing stage can overcome this problem at an extent.The optimization of VBHF is to determine the optimal BHF in every deep drawing stage.In this paper,a new heuristic optimization algorithm named Jaya is introduced to solve the optimization efficiently.An improved“Quasi-oppositional”strategy is added to Jaya algorithm for improving population diversity.Meanwhile,an innovated stop criterion is added for better convergence.Firstly,the quality evaluation criteria for wrinkling and tearing are built.Secondly,the Kriging models are developed to approximate and quantify the relation between VBHF and forming defects under random sampling.Finally,the optimization models are established and solved by the improved QO-Jaya algorithm.A VBHF optimization example of component with complicated shape and thin wall is studied to prove the effectiveness of the improved Jaya algorithm.The optimization results are compared with that obtained by other algorithms based on the TOPSIS method.展开更多
A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminu...A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.展开更多
Based on the ABAQUS/explicit finite element method,the deep drawing of 6A16 alloy pre-aged and then storaged at room temperature for 1 week with various blank-holder forces(10,14,18 kN) was studied.The distribution an...Based on the ABAQUS/explicit finite element method,the deep drawing of 6A16 alloy pre-aged and then storaged at room temperature for 1 week with various blank-holder forces(10,14,18 kN) was studied.The distribution and variation of stress and strain in deformation zones were investigated to drive the forming property and process of the alloy.Besides,the simulation result was verified combined with the deep drawing experiments.The results show that the stress and strain of the deformation zone have an incremental trend with the blank-holder force increasing while the deformation degree and grain size within a certain deformation zone have an obvious increase and an enlargement,respectively.After the deep drawing,the hardness of products also increases with the enhancement of blank-holder force.The blank-holder force of 18 kN is certified as the preferential one by the analysis of microstructure and simulation results.展开更多
基金This project is supported by Doctoral Fundation of China(No.20010487002) and Municipal Key Technology R&D Program of Guangzhou, China(No, 2002Z3-0211).
文摘The study of multipoint blank holder force(BHF) control is carried out for hydroforming a complicated shape motorcycle fuel tank. By finite element method (FEM) simulation, the configuration of multipoint blank holder cylinders and the setting of local BHF are optimized, and the influences of the multipoint BHF on the hydromechanical deep drawing and conventional hydroforming processes are studied. The desired fluid pressure and whole BHF are predicted for hydromechanical deep drawing process. Finally, simulation results are testified by forming experiment, and they are in agreement very well.
文摘Blank holder force (BHF) is an important measure to control the sheet metal forming. BHF is identified quickly using artificial neural network (ANN) on the basis of its analytical description. And critical rupture and wrinkle BHF curves are given. A close-loop control system is established to finish the forming process.
文摘At first, a series of finite element method (FEM) simulation tests were used to find the critical forming conditions of hot-galvanized sheet steel during the rectangular box drawing processing when constant blank holder forces were applied. According the test results, the reasonable alteration scope of initial variable blank holder force (VBHF) was as 1.9-2.3 T. Then, based on the test productions of blank holder force, 12 typical VBHF curves were applied to perform the simulation tests by the simulation software of DYNAFORM. The simulation test results showed that VBHF had great effects on drawing formability of hot-galvanized sheet steel during the rectangular box drawing. However, the different VBHF curves were applied to control the whole drawing and it would get great different effects. At the same tine, the VBHF had great effects on the maximum thick thinning ratio, but had little effect on the maximum thick incrassation ratio. So, reasonable application of the VBHF would greatly decrease the fractures. When the VBHF profile is taken as curve L, the best effect of drawing formability could be obtained. When curve I is used, contrary effect could be gotten. The other types of curves would cause effects between above two types of VBHF curves. Finally, the actual tests were applied to check the validity of the FEM simulation tests. The results show that the FEM simulation tests are good ways for predicting and optimizing the VBHF.
文摘Constituting the reasonable control models of the wrinkle limit blank holder forces is the sticking point of the processes of the deep drawing with variable blank-holder forces, especially in the square-box forming. To begin with, a mode of segmenting flange of the square-box into eight zones is put forward according to the fact that the uniformity of flange deforming can be improved by control-ling segment blank-holders. Considering the integral influence of shear stress, a new concept, strain relaxation factor is defined. Hereby, the law of distribution of stress and stain in the deforming flange of square-box is achieved. Then based on these mechanical analysis models and the energy principle, the wrinkling flexivity functions of the straight flange and the circle flange are given, and the corresponding formulae of wrinkling limit blank-holder force in these two situations are also educed. In these processes, ply-anisotropy, strain hardening, thickness and friction are considered. In the end, a calculating example is designed to validate the rationality of the formulae of wrinkling limit blank-holder force, at the same time, the influences of the ply-anisotropy exponent and the strain hardening exponent on the wrinkle limit blank holder forces are also analyzed.
文摘Wrinkling and fracture are main defects in sheet metal forming of aluminum alloy sheet,which can be reduced or even eliminated by manipulating a suitable blank -holder forces (BHF). But,it is difficult to attain the optimum BHF during she et metal forming. A new optimization algorithm integrating the finite element me thod (FEM) and adaptive response surface method is presented to determinate the optimal BHFs in deep drawing of aluminum rectangular box. To assure convergence,the trust region modes management strategies are used to adjust the move limit of design spaces. Finally,the optimum results of rectangular box deep drawing a re given. Verification experiments are performed to verify the optimal result.
文摘Blank holder force (BHF) control is used to prevent wrinkles of sheet metal in deep drawing process. Based on a novel conception of BHF control technique driven by servo-motor, a new BHF device with six-bar linkage mechanism has been designed and manufactured. Whole control system of the new BHF technique was developed, and the basic structure of the hardware configuration of the system was given. Software analysis, implementation and division of the functional modules have been done. Also, the control software in data acquisition and processing module has been developed in the relevant technology of the BHF control system for the requirements of real-time, stability and accuracy. By the new BHF device combined with the hardware and the software system, the BHF can be regulated accurately variation with the predefined BHF profile in deep drawing process.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3304200)National Natural Science Foundation of China(Grant No.52075479)Taizhou Municipal Science and Technology Project of China(Grant No.1801gy23).
文摘Blank holder force(BHF)is a crucial parameter in deep drawing,having close relation with the forming quality of sheet metal.However,there are different BHFs maintaining the best forming effect in different stages of deep drawing.The variable blank holder force(VBHF)varying with the drawing stage can overcome this problem at an extent.The optimization of VBHF is to determine the optimal BHF in every deep drawing stage.In this paper,a new heuristic optimization algorithm named Jaya is introduced to solve the optimization efficiently.An improved“Quasi-oppositional”strategy is added to Jaya algorithm for improving population diversity.Meanwhile,an innovated stop criterion is added for better convergence.Firstly,the quality evaluation criteria for wrinkling and tearing are built.Secondly,the Kriging models are developed to approximate and quantify the relation between VBHF and forming defects under random sampling.Finally,the optimization models are established and solved by the improved QO-Jaya algorithm.A VBHF optimization example of component with complicated shape and thin wall is studied to prove the effectiveness of the improved Jaya algorithm.The optimization results are compared with that obtained by other algorithms based on the TOPSIS method.
基金Project(50934011) supported by the National Natural Science Foundation of ChinaProject(20080430085) supported by the China Postdoctoral Science Foundation
文摘A VBHF(Variable Blank Holder Force) optimization strategy was employed to determine the optimal time-variable and spatial-variable BHF trajectories,aiming at improving the formability of automobile panels with aluminum alloy sheet.The strategy was implemented based on adaptive simulation to calculate the critical wrinkling BHF for each segmented binder of the Numisheet' 05 deck lid in a single round of simulation.The thickness comparison of the stamped part under optimal VBHF and constant BHF shows that the variance of the four sections is decreased by 70%,44%,64% and 61%,respectively,which indicates significant improvement in thickness distribution and variation control.The investigation through strain path comparison reveals the fundamental reason of formability improvement.The study proves the applicability of the new VBHF optimization strategy to complex parts with aluminum alloy sheet.
基金financially supported by the National Key Research and Development Program of China (No. 2016YFB0300805)
文摘Based on the ABAQUS/explicit finite element method,the deep drawing of 6A16 alloy pre-aged and then storaged at room temperature for 1 week with various blank-holder forces(10,14,18 kN) was studied.The distribution and variation of stress and strain in deformation zones were investigated to drive the forming property and process of the alloy.Besides,the simulation result was verified combined with the deep drawing experiments.The results show that the stress and strain of the deformation zone have an incremental trend with the blank-holder force increasing while the deformation degree and grain size within a certain deformation zone have an obvious increase and an enlargement,respectively.After the deep drawing,the hardness of products also increases with the enhancement of blank-holder force.The blank-holder force of 18 kN is certified as the preferential one by the analysis of microstructure and simulation results.