The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanica...The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.展开更多
The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite elemen...The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.展开更多
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis...In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.展开更多
Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly ...Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.展开更多
The effect of commercial frequency electromagnetic field on the solidification structure and mechanical propertiesof copper hollow blanks prepared by horizontal continuous casting method was investigated. The results ...The effect of commercial frequency electromagnetic field on the solidification structure and mechanical propertiesof copper hollow blanks prepared by horizontal continuous casting method was investigated. The results show thatwhen the electromagnetic field is imposed, columnar grains are evidently refined and fine equiaxed grains areobtained in the inner side of the cross-section. Moreover, with the increase of input current, the equiaxed grain regionwidens and the grains distribute more uniformly in the circumferential direction. Meanwhile, the mechanical properties areremarkably improved by the application of electromagnetic field. When the input current is 140 A, the tensile strengthincreases 15% and the elongation increases 10%. However, the electromagnetic field has no effect on the distribution ofmicroelements.展开更多
The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program“Key Fundamental Scientific Problems on Mechanical Equipment Remanufactu...The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program“Key Fundamental Scientific Problems on Mechanical Equipment Remanufacturing”are reviewed in this work.Large centrifugal compressor impeller blanks were used as the study object.The materials of the blanks were FV520B and KMN.The mechanism and evaluation model of ultra-high cycle fatigue,erosion wear,and corrosion damage were studied via theoretical calculation,finite element simulation,and experimentation.For ultra-high cycle fatigue damage,the characteristics of ultra-high cycle fatigue of the impeller material were clarified,and prediction models of ultra-high cycle fatigue strength were established.A residual life evaluation technique based on the“b-HV-N”(where b was the nonlinear parameter,HV was the Vickers hardness,and N was the fatigue life)double criterion method was proposed.For erosion wear,the flow field of gas-solid two-phase flow inside the impeller was simulated,and the erosion wear law was clarified.Two models for erosion rate and erosion depth calculation were established.For corrosion damage,the electrochemical and stress corrosion behaviors of the impeller material and welded joints in H2S/CO2 environment were investigated.KISCC(critical stress intensity factor)and da/dt(crack growth rate,where a is the total crack length and t is time)varied with H2S concentration and temperature,and their variation laws were revealed.Through this research,the key scientific problems of the damage behavior and mechanism of remanufacturing objects in the multi-strength field and cross-scale were solved.The findings provide theoretical and evaluation model support for the analysis and evaluation of large centrifugal compressor impellers before remanufacturing.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51275444)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20121333110003)Natural Science Foundation-Steel and Iron Foundation of Hebei Province,China(Grant No.E2014203271)
文摘The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.
基金supported by the Hebei Provincial Natural Science Foundation of China(No.E2007000591).
文摘The aim of this study was to simulate the solidification process of beam blank continuous casting, and then find the reasons for the typical defects of the beam blank. A two-dimensional transient coupled finite element model has been developed to compute the temperature and stress profile in beam blank continuous casting. The enthalpy method was used in the heat conduction equation. The thermo-mechanical property in the mushy zone was taken into consideration in this calculation. It is shown that at the mold exit the thickness of the shell had its maximum value at the flange tip and its minimum value at the fillet. The temperature had a great fluctuation on the surface of the beam blank in the secondary cooling zone. At the unbending point, the surface temperature of the web was in the brittleness temperature range under the present condition. To ensure the quality, it is necessary to weaken the intensity of secondary cooling. At the mold exit the equivalent stress and strain have higher values at the flange tip and at the web. From the spray 1 to the unbending point, the maximum values of stress and strain gradually moved to the internal section of the flange tip and the web. However, whenever, there were bigger stress and strain values near the flange tip and the web than in the other parts, it must be very easy to generate cracks at those positions. Now, online verification of this simulation has been developed, which has proved to be very useful and efficient to instruct the practical production of beam blank continuous casting.
基金Supported by National Natural Science Foundation of China(Grant No.51375346)Doctoral Fund of Ministry of Education of China(Grant No.20110072110056)
文摘In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.
文摘Blanking is a major process and has a wide range of usage in manufacturing industry. The general concept of blanking seems a simple one but governing parameters are many and have a complex relationship which directly affect the quality of the produced parts (blanks) and also the energy efficiency of the process. The main problem is the lack of prediction capabilities of the effect of these parameters that lead to time, money and labor consuming trial and error procedures in experimental studies. Usage of FEM based programs to simulate blanking to obtain numerical results and observe the shearing mechanism is a cheap and a detailed way for industrial applications. In this study five different clearances (1%, 3%, 5%, 10% and 20%) and three different thicknesses (t = 2 mm, t = 3 mm and t = 4 mm) were used for simulation and experimental studies of the blanking process. Simulations were executed by using the FEM program, Deform 2-D. Investigations were made on the parameters related to crack progression like crack initiation and crack propagation angles, indentation angle, rollover angle and depth and also the related blanking energy values. The results of the present paper are in agreement with the results of experimental studies.
文摘The effect of commercial frequency electromagnetic field on the solidification structure and mechanical propertiesof copper hollow blanks prepared by horizontal continuous casting method was investigated. The results show thatwhen the electromagnetic field is imposed, columnar grains are evidently refined and fine equiaxed grains areobtained in the inner side of the cross-section. Moreover, with the increase of input current, the equiaxed grain regionwidens and the grains distribute more uniformly in the circumferential direction. Meanwhile, the mechanical properties areremarkably improved by the application of electromagnetic field. When the input current is 140 A, the tensile strengthincreases 15% and the elongation increases 10%. However, the electromagnetic field has no effect on the distribution ofmicroelements.
文摘The theoretical and technological achievements in the damage mechanism and evaluation model obtained through the national basic research program“Key Fundamental Scientific Problems on Mechanical Equipment Remanufacturing”are reviewed in this work.Large centrifugal compressor impeller blanks were used as the study object.The materials of the blanks were FV520B and KMN.The mechanism and evaluation model of ultra-high cycle fatigue,erosion wear,and corrosion damage were studied via theoretical calculation,finite element simulation,and experimentation.For ultra-high cycle fatigue damage,the characteristics of ultra-high cycle fatigue of the impeller material were clarified,and prediction models of ultra-high cycle fatigue strength were established.A residual life evaluation technique based on the“b-HV-N”(where b was the nonlinear parameter,HV was the Vickers hardness,and N was the fatigue life)double criterion method was proposed.For erosion wear,the flow field of gas-solid two-phase flow inside the impeller was simulated,and the erosion wear law was clarified.Two models for erosion rate and erosion depth calculation were established.For corrosion damage,the electrochemical and stress corrosion behaviors of the impeller material and welded joints in H2S/CO2 environment were investigated.KISCC(critical stress intensity factor)and da/dt(crack growth rate,where a is the total crack length and t is time)varied with H2S concentration and temperature,and their variation laws were revealed.Through this research,the key scientific problems of the damage behavior and mechanism of remanufacturing objects in the multi-strength field and cross-scale were solved.The findings provide theoretical and evaluation model support for the analysis and evaluation of large centrifugal compressor impellers before remanufacturing.