This article shows an innovative method to model and validate the hot air flow through the blast furnacés tuyeres. This study will be the basis for flow measurements implementation and safety interlocks for the p...This article shows an innovative method to model and validate the hot air flow through the blast furnacés tuyeres. This study will be the basis for flow measurements implementation and safety interlocks for the pulverized coal injection. The flow measurements were taken in the blast furnace down leg pipes by installing refractory Venturi tubes. The system for the calculation of differential pressure takes into consideration the dimension of the Venturi, the air density and compressibility. The objective is to specify the flow transmitters required to automate a control system and implement safety interlocks for the coal injection plant.展开更多
The liquid flow in blast furnace hearth can result in the erosion of hearth. To prolong the campaign life of blast furnace, the effects of coke bed structure, coke porosity and deepness of taphole on liquid flow in he...The liquid flow in blast furnace hearth can result in the erosion of hearth. To prolong the campaign life of blast furnace, the effects of coke bed structure, coke porosity and deepness of taphole on liquid flow in hearth were studied by re model under different conditions. The results show that with the decrease of coke porosity, the peripheral flow is enhanced. Moreover, the existence of narrow coke free zone and the deepness reduction of taphole can increase the flowability on the bottom of hearth.展开更多
A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiment...A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.展开更多
The molten liquid flow inside a packed bed is a familiar momentum transportation phenomenon in a blast furnace. With regard to the reported mathematical models describing the liquid flow within a packed bed, there are...The molten liquid flow inside a packed bed is a familiar momentum transportation phenomenon in a blast furnace. With regard to the reported mathematical models describing the liquid flow within a packed bed, there are some obstacles for their application in engineering design, or some limitations in the model itself. To overcome these problems, the forces from the packed bed to the liquid flow were divided into appropriate body and surface forces on the basis of three assumptions. Consequently, a new mathematical model was built to present the liquid flow inside the coke bed in a blast furnace. The mathematical model can predict the distribution of liquid flowrate and the liquid flowing range inside the packed bed at any time. The predicted results of this model accord well with the experimental data. The model will be applied considerably better in the simulation on the ironmaking process compared with the existent models.展开更多
A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement b...A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement between observed and calculated values verifies the validity of this model.On the basis of this model,various parameters for the surrounding of the dry zone of Blast FurnaceNo.I-BF of the Beijing Iron and Steel Company have been computed,from which a diagram for demar-cation of fluidization of coke and flooding of slag has been proposed.展开更多
The cooling water flow rate for hearth of large blast furnaces was calculated by simulation. The results show that the cooling water flow rate shall be above 4 200m3/ h for hearth of large blast furnaces; to meet requ...The cooling water flow rate for hearth of large blast furnaces was calculated by simulation. The results show that the cooling water flow rate shall be above 4 200m3/ h for hearth of large blast furnaces; to meet requirements of the increasing smelting intensity and to ensure the safety at the end of the first campaign,the designed maximum cooling water flow rate should be 5 900m3/ h; according to the flow distribution stability and the calculated resistance loss,hearth cooling stave pipes with the specification of 76 mm × 6 mm shall be adopted to assure the flow velocity in pipes of hearth cooling stave in the range of 1. 9- 2. 3 m / s.展开更多
Understanding the complex phenomena in BF hearth is essential to increase furnace productivity and to extend furnace campaign.We have developed several continuum-based mathematical/numerical models to simulate the mul...Understanding the complex phenomena in BF hearth is essential to increase furnace productivity and to extend furnace campaign.We have developed several continuum-based mathematical/numerical models to simulate the multi-phase flow,heat transfer and chemical reactions in the BF hearth.These models have generated an improved insight on the mechanisms for liquid drainage efficiency,lining erosion and wall protection in BF hearth under operational conditions.The current paper gives an overview of these studies in three aspects:Gas flow and pressure on the liquid surface,and their effect on the drainage characteristics;The flow and temperature distributions of liquid iron in BF hearth,and the temperature distribution in the refractories;Finally,titanium behaviors due to titania injection to form Ti(C,N) -rich scaffold on the hearth surface,to protect the hearth from erosion.展开更多
The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping, cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration...The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping, cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration and smooth operation in the blast furnace. However, the furnace closeness brings about great difficulty in the study of high-temperature gas flow. The charging and blasting system affecting the gas flow and whether the top gas flow distribution could reflect its inner condition as well as the furnace state, such as hanging or scaffolding, which have become the main problems for the research on gas flow. Recently, several researches overseas studied gas flow distribution using the numerical simulation method; however, such a research was rare amongst the natives. In this study, the flow model of gas in cohesive and lumpy zone was established using the numerical simulation software and the gas flow distributions with uniform distribution of burden permeability, scaffolding of wall, and nonuniform charge level were analyzed. As a result, the effects of cohesive zone and lower parts on the gas flow are very limited and the charge level largely affects the distribution of top gas flow. Therefore, it was found that the distribution of top gas flow could hardly reflect the inner gas flow. The process is called "redistribution" effect, which means that the gas flow after passing through the raceway, dripping, and cohesive zone is distributed when it flows into the lumpy zone.展开更多
Nowadays,there are two major trends,which are the increasing blast furnace (BF) working volume and the decreasing fuel resource as well as the decline in its quality,in the ironmaking filed. The two trends lead to t...Nowadays,there are two major trends,which are the increasing blast furnace (BF) working volume and the decreasing fuel resource as well as the decline in its quality,in the ironmaking filed. The two trends lead to the difficulty in the BF operation. The decline of the BF stability requires higher and more elaborate operational techniques. A reasonable and compatible BF comprehensive operating system,as the base of the BF stabilization,is desired to satisfy the demand of large-scaled BF developments. Based on the practical operation of Baosteel No. 3 BF in 2010, the present work analyzes and discusses the basic rules of large-scaled BF stable control techniques,and further optimizes and improves its gas flow control techniques, develops strategies against the decline in fuel quality, which will contribute to the promotion of largescaled BF operational techniques progress.展开更多
This paper reports an experimental study on a liquid injector assembly integrated with an ultra-high frequency pulsed air jet that operates at 21 kHz. The active air-blasting assembly steadily injects a liquid through...This paper reports an experimental study on a liquid injector assembly integrated with an ultra-high frequency pulsed air jet that operates at 21 kHz. The active air-blasting assembly steadily injects a liquid through four micro-nozzles of 0.4 mm diameters each, positioned around a 1 mm nozzle through which the pulsed actuation jet flows out at supersonic velocity. High-frequency compressible air vortexes and shock waves generated by the injector atomize the liquid stream into finer droplets and distribute them to a larger area to improve mixing with the ambiance. The paper presents the design details and preliminary studies on the flow field characteristics of this novel injection scheme, which is a potential candidate for high-speed flow mixing and control applications.展开更多
The influence of material gate position in bur- den-flow rate has been studied by simulating exper- iments.A mathematical model describing the char- acteristics of burden-flow at the material gate of bell-less top bla...The influence of material gate position in bur- den-flow rate has been studied by simulating exper- iments.A mathematical model describing the char- acteristics of burden-flow at the material gate of bell-less top blast furnace(BF)is established in this paper,in an attempt to solve the problems in bur- den distribution,especially to eliminate the over- lapping or disconnection of the burden at the be- ginning and at the end of a ring,which plays a quite important role in the blast furnace operation.展开更多
Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular ...Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.展开更多
文摘This article shows an innovative method to model and validate the hot air flow through the blast furnacés tuyeres. This study will be the basis for flow measurements implementation and safety interlocks for the pulverized coal injection. The flow measurements were taken in the blast furnace down leg pipes by installing refractory Venturi tubes. The system for the calculation of differential pressure takes into consideration the dimension of the Venturi, the air density and compressibility. The objective is to specify the flow transmitters required to automate a control system and implement safety interlocks for the coal injection plant.
文摘The liquid flow in blast furnace hearth can result in the erosion of hearth. To prolong the campaign life of blast furnace, the effects of coke bed structure, coke porosity and deepness of taphole on liquid flow in hearth were studied by re model under different conditions. The results show that with the decrease of coke porosity, the peripheral flow is enhanced. Moreover, the existence of narrow coke free zone and the deepness reduction of taphole can increase the flowability on the bottom of hearth.
文摘A renovation project of miniaturization and high efficiency is provided for the hot blast stove .The experimental data tested feasibility of the new-type swirl flow hot blast stove. The normal and hot state experiments have been done through changing the angle of gas entering into the regenerator. Factors influencing pressure drop have been studied and analyzed. The experimental results can be formulated in the form of the Ergun equation. The regression equation is obtained. And two modified coefficients are offered to the regenerator pressure drop of the new-type swirl flow hot blast stove.
基金supported by the National Natural Science Foundation of China (No.50704040, 20805060)the Natural Science Foundation Project of Chongqing Science & Technology Commission, China (No.CSTC,2009BB4197)
文摘The molten liquid flow inside a packed bed is a familiar momentum transportation phenomenon in a blast furnace. With regard to the reported mathematical models describing the liquid flow within a packed bed, there are some obstacles for their application in engineering design, or some limitations in the model itself. To overcome these problems, the forces from the packed bed to the liquid flow were divided into appropriate body and surface forces on the basis of three assumptions. Consequently, a new mathematical model was built to present the liquid flow inside the coke bed in a blast furnace. The mathematical model can predict the distribution of liquid flowrate and the liquid flowing range inside the packed bed at any time. The predicted results of this model accord well with the experimental data. The model will be applied considerably better in the simulation on the ironmaking process compared with the existent models.
文摘A three-dimensional mathematical model,based on differential balances of mass and momentum,hasbeen developed to describe the two-phase flow of gas and liquid through the dropping zone of the blast fur-nace.Agreement between observed and calculated values verifies the validity of this model.On the basis of this model,various parameters for the surrounding of the dry zone of Blast FurnaceNo.I-BF of the Beijing Iron and Steel Company have been computed,from which a diagram for demar-cation of fluidization of coke and flooding of slag has been proposed.
文摘The cooling water flow rate for hearth of large blast furnaces was calculated by simulation. The results show that the cooling water flow rate shall be above 4 200m3/ h for hearth of large blast furnaces; to meet requirements of the increasing smelting intensity and to ensure the safety at the end of the first campaign,the designed maximum cooling water flow rate should be 5 900m3/ h; according to the flow distribution stability and the calculated resistance loss,hearth cooling stave pipes with the specification of 76 mm × 6 mm shall be adopted to assure the flow velocity in pipes of hearth cooling stave in the range of 1. 9- 2. 3 m / s.
文摘Understanding the complex phenomena in BF hearth is essential to increase furnace productivity and to extend furnace campaign.We have developed several continuum-based mathematical/numerical models to simulate the multi-phase flow,heat transfer and chemical reactions in the BF hearth.These models have generated an improved insight on the mechanisms for liquid drainage efficiency,lining erosion and wall protection in BF hearth under operational conditions.The current paper gives an overview of these studies in three aspects:Gas flow and pressure on the liquid surface,and their effect on the drainage characteristics;The flow and temperature distributions of liquid iron in BF hearth,and the temperature distribution in the refractories;Finally,titanium behaviors due to titania injection to form Ti(C,N) -rich scaffold on the hearth surface,to protect the hearth from erosion.
基金Item Sponsored by National Natural Science Foundation of China (60472095)
文摘The gas flow from tuyere to raceway zone by blasting involves three distributional zones, such as dripping, cohesive, and lumpy zone. The gas flow distribution in lumpy zone directly affects the gas utilization ration and smooth operation in the blast furnace. However, the furnace closeness brings about great difficulty in the study of high-temperature gas flow. The charging and blasting system affecting the gas flow and whether the top gas flow distribution could reflect its inner condition as well as the furnace state, such as hanging or scaffolding, which have become the main problems for the research on gas flow. Recently, several researches overseas studied gas flow distribution using the numerical simulation method; however, such a research was rare amongst the natives. In this study, the flow model of gas in cohesive and lumpy zone was established using the numerical simulation software and the gas flow distributions with uniform distribution of burden permeability, scaffolding of wall, and nonuniform charge level were analyzed. As a result, the effects of cohesive zone and lower parts on the gas flow are very limited and the charge level largely affects the distribution of top gas flow. Therefore, it was found that the distribution of top gas flow could hardly reflect the inner gas flow. The process is called "redistribution" effect, which means that the gas flow after passing through the raceway, dripping, and cohesive zone is distributed when it flows into the lumpy zone.
文摘Nowadays,there are two major trends,which are the increasing blast furnace (BF) working volume and the decreasing fuel resource as well as the decline in its quality,in the ironmaking filed. The two trends lead to the difficulty in the BF operation. The decline of the BF stability requires higher and more elaborate operational techniques. A reasonable and compatible BF comprehensive operating system,as the base of the BF stabilization,is desired to satisfy the demand of large-scaled BF developments. Based on the practical operation of Baosteel No. 3 BF in 2010, the present work analyzes and discusses the basic rules of large-scaled BF stable control techniques,and further optimizes and improves its gas flow control techniques, develops strategies against the decline in fuel quality, which will contribute to the promotion of largescaled BF operational techniques progress.
文摘This paper reports an experimental study on a liquid injector assembly integrated with an ultra-high frequency pulsed air jet that operates at 21 kHz. The active air-blasting assembly steadily injects a liquid through four micro-nozzles of 0.4 mm diameters each, positioned around a 1 mm nozzle through which the pulsed actuation jet flows out at supersonic velocity. High-frequency compressible air vortexes and shock waves generated by the injector atomize the liquid stream into finer droplets and distribute them to a larger area to improve mixing with the ambiance. The paper presents the design details and preliminary studies on the flow field characteristics of this novel injection scheme, which is a potential candidate for high-speed flow mixing and control applications.
文摘The influence of material gate position in bur- den-flow rate has been studied by simulating exper- iments.A mathematical model describing the char- acteristics of burden-flow at the material gate of bell-less top blast furnace(BF)is established in this paper,in an attempt to solve the problems in bur- den distribution,especially to eliminate the over- lapping or disconnection of the burden at the be- ginning and at the end of a ring,which plays a quite important role in the blast furnace operation.
文摘Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.